

December 29, 2023

Central Plymouth County Water District Commission 44 Obery Street Plymouth, Massachusetts 02360

Re: Silver Lake Water Quality Monitoring Program Technical Memorandum Addendum – 2023 Monitoring Results TRC Project No. 016120

Dear Commissioners,

In September 2023, the Central Plymouth County Water District Commission (CPCWDC) approved TRC Environmental Corporation (TRC) to collect additional water quality monitoring data as a supplement the 2021-2022 Silver Lake Water Quality Monitoring Program (WQMP).

This report serves as an addendum to the 2021-2022 Silver Lake Water Quality Monitoring Program Technical Memorandum and describes the supplemental monitoring completed in 2023, including the following elements:

- Description of the locations, dates, and parameters monitoring in 2023.
- Presentation of the results from 2023.
- Conclusions and recommendations, as informed by these results.

2023 Silver Lake Water Quality Monitoring Program – Approach

The sample locations for the 2023 Silver Lake WQMP primarily consisted of a subset of locations previously monitored in the 2021-2022 period (**Figure 1**). These locations were selected to focus on the largest inputs and outputs of nutrients identified by the 2021-2022 Silver Lake WQMP. Additionally, a new surface monitoring location (SLIL-P) was added in response to observations by the Jones River Watershed Association of a plume of discolored water emerging into Silver Lake from the diversion inlet pipe during an emergency water diversion from East Monponsett Pond. Thie emergency water diversion lasted from September 13 to September 17, 2023.

The first 2023 monitoring event took place on September 20, 2023. This event included a total of seven sample locations: four in-lake surface locations, one tributary location (Tubbs Meadow Brook at Route 27), one outlet location (Jones River at Lake Street), and one diversion

ilver Lake near the deep in-lake sampling locations (SLIL-S/M/B), October 24, 2023.

source surface water location (East Monponsett Pond near the City of Brockton diversion intake). Although the East Monponsett Pond diversion pipe was no longer flowing at the time of this visit, sampling was conducted at SLIL-P to help measure any lingering differential in Silver Lake's water quality between this new monitoring station and the previously established deep hole monitoring stations (SLIL-S, SLIL-M, and SLIL-B).

Central Plymouth County Water District Commission December 29, 2023

All sampling locations for the 2021-2023 period shown for reference. Locations sampled in 2023 are circled in gold.

The new monitoring location at Silver Lake (SLIL-P), which was sampled on September 20, 2023, in response to observations of discolored water flowing into the lake the week before.

The second monitoring event took place on October 24, 2023, and included a total of six sample locations: three inlake surface locations, one tributary location, one outlet location, and one diversion source surface water location. Given the lack of active diversion for more than a month and the unremarkable visual appearance at the time of the visit, the area adjacent to the East Monponsett Pond diversion inlet (SLIL-P) was excluded from the October monitoring event.

Samples collected during the September and October monitoring events were submitted to the same commercial laboratories used for the 2021-2022 Silver Lake WQMP (i.e., Phoenix Environmental Laboratories, Alpha Analytical, Aquatic Analysts, and GreenWater Laboratories) for their respective expertise in the following: total phosphorus, dissolved phosphorus, total nitrogen (including total Kjeldahl nitrogen, nitrate-nitrogen, and nitrite-nitrogen), chlorophyll a, phytoplankton (identification and enumeration), and cyanotoxins (microcystins).

Additional water quality measurements were field-

measured by TRC at each sampling location, including the following: water temperature, dissolved oxygen, specific conductance, pH, turbidity, and apparent color. Secchi disk transparency was measured at lake and pond locations. Discharge (streamflow) was measured at tributary and outlet stations.

This supplemental water quality monitoring was conducted under the existing Sampling and Analysis Plan (SAP) and Quality Assurance Project Plan (QAPP).

2023 Silver Lake Water Quality Monitoring Program – Results

Silver Lake

Water Temperature

Silver Lake was strongly stratified in September, with a distinct warm layer occupying the top 7 m (23 ft) of the water column and a cold layer located below 9 m (30 ft) (**Figure 2**). Surface water temperatures were 21°C at SLIL-S in the deepest part of the lake and 21.8°C at SLIL-P near the East Monponsett Pond diversion inlet structure (**Table 1**). Water temperatures declined to 10.3°C near the lake bottom at SLIL-B.

Although weaker, stratification was still evident in October, with somewhat warmer water present in the top 10 m (33 ft) of Silver Lake and colder water evident below 12 m (39 ft) (**Figure 2**). Surface water temperatures were 15.2°C at SLIL-S in the deep hole monitoring location (**Table 1**). Water temperatures remained at 10.3°C near the lake bottom at SLIL-B.

Generally, patterns in water temperatures in 2023 were comparable to those observed at similar points in the season during 2021-2022.

Dissolved Oxygen

In-lake dissolved oxygen concentrations obtained during the 2023 monitoring program largely mirrored the water temperature profiles, with higher concentrations in surface waters and lower concentrations in bottom waters (**Table 1**). Dissolved oxygen concentrations were sufficient to support aquatic life (greater than 5.0 mg/L) in water shallower than 7 m (September) to 10 m (October). Readings became hypoxic (<5.0 mg/L) or anoxic (<2.0 mg/L) in deeper water.

These patterns in dissolved oxygen concentrations in 2023 were comparable to those observed at similar points in the season in 2021-2022.

Specific Conductance

Field-measured specific conductance in Silver Lake was typical of a freshwater system (i.e., less than 1,000 μ S/cm) in September and October 2023. As measured at the in lake sample location (SLIL), specific conductance ranged from 191 to 224 μ S/cm in September 2023 and between 194 and 234 μ S/cm in October 2023. Lower values were observed in surface waters with highest values coming from the deepest waters (**Table 1**).

Generally, patterns in specific conductance observed in 2023 were comparable to those observed at similar points in the season in 2021-2022.

<u>pH</u>

Field-measured pH in Silver Lake demonstrated a gradient from higher pH (slightly basic) in surface waters to lower pH (slightly acidic) in bottom waters during both September and October (**Table 1**). The gradient was observed to be sharper in September, when the lake was strongly stratified, than October, when thermal stratification had weakened. Overall, pH in Silver Lake ranged from a minimum of 6.9 SU (SLIL-B) in October to a maximum of 7.5 SU in September (SLIL-S).

Generally, patterns in pH observed during the 2023 monitoring program were consistent with those observed at similar points in the season in 2021-2022.

Turbidity, Apparent Color, and Secchi Depth

Field-measured data collected as part of the 2023 monitoring program indicate turbidity of the in-lake samples ranged from 0.03 NTU (SLIL-B) in October to 2.71 NTU (SLIL-S) in September (**Table 1**). However, turbidity demonstrated no consistent pattern from surface to bottom between the two months.

Apparent color was consistent at the in-lake sample location (SLIL) during both months of the 2023 monitoring program, with a median color measurement of 10 PCU (**Table 1**).

Secchi depth at the in-lake sample location (SLIL) was 1.5 m (5 ft) in September 2023, indicating restricted transparency at the surface of the water column (**Table 1**). By October 2023, Secchi depth had increased to 2.5 m (8 ft), indicating improved transparency.

Generally, turbidity and apparent color measurements during the 2023 monitoring program were comparable with those observed at similar points in the season in 2021-2022. In contrast, Secchi depth was generally lower in 2023 when compared to similar points in the season during 2021-2022, potentially reflecting the higher biovolume of phytoplankton (including cyanobacteria) than at similar points in prior years. However, 2023 Secchi

Figure 3. Secchi Disk Readings 2021-2023

depth readings were not outside the range of values previously observed during the 2021-2022 study (Figure 3).

Parameter	Unit	Month	East Monponsett Pond Diversion (EPD)	Tubbs Meadow Brook (SLT-1)	Silver Lake In-Lake Surface (SLIL-S)	Silver Lake In-Lake Middle (SLIL-M)	Silver Lake In-Lake Bottom (SLIL-B)	Silver Lake In-Lake Near Monponsett Diversion Inlet (SLIL-P)	Jones River (SLT-D)
Temperature	°C	Sep	22.2	18.5	21.0	16.8	10.3	21.8	16.9
		Oct	15.9	11.6	15.2	12.6	10.3	NS	11.6
Dissolved Oxygen mg/L		Sep	8.11	4.00	7.41	0.23	0.08	8.05	4.32
		Oct	8.86	5.45	7.83	0.28	0.07	NS	3.05
	%	Sep	92.9	42.5	82.6	2.3	0.7	90.1	44.1
		Oct	88.1	49.5	76.6	2.8	0.6	NS	27.7
Specific Conductance	µS/cm	Sep	182	136	191	206	219	189	125
		Oct	180	164	194	205	232	NS	121
pH	SU	Sep	6.8	7.8	7.5	7.2	7.1	7.2	4.9
		Oct	6.8	6.6	7.2	7.0	6.9	NS	6.6
Turbidity	NTU	Sep	0.91	1.96	1.52	0.89	2.71	1.48	6.01
		Oct	1.06	2.17	0.58	0.51	0.03	NS	2.05
Apparent Color	PCU	Sep	10	10	20	10	10	10	10
		Oct	10	20	10	10	10	NS	20
Secchi Depth	m	Sep	1.25	N/A	1.5	N/A	N/A	NS	N/A
		Oct	1.25	N/A	2.5	N/A	N/A	NS	N/A
Discharge	cfs	Sep	N/A	1.89	N/A	N/A	N/A	N/A	0.00
		Oct	N/A	0.65	N/A	N/A	N/A	N/A	0.09

Table 1. Field-Measured Water Quality Results

Figure 4. Total Phosphorus 2021-2023

Silver Lake and East Monponsett Pond results presented as boxplots of all data collected 2021-2023. Median value appears as the dividing line within the box. Average value appears as an "x." Boxplot whiskers represent highest and lowest observed values within 1.5 times the interquartile range (i.e., the blue box).

Phosphorus

Total phosphorus concentrations in Silver Lake ranged from 0.016 to 0.063 mg/L in September and October 2023, with the highest concentrations observed in bottom waters (**Table 2**). This pattern of higher phosphorus at depth (represented by SLIL-B) is consistent with what has been observed over the course of the Silver Lake WQMP (**Figure 4**) and tends to be most pronounced when the lake is thermally stratified in summer and early autumn.

These observed concentrations are largely in line with previous in-lake observations during the Silver Lake WQMP, including the total phosphorus measured near the East Monponsett Pond diversion inlet pipe (SLIL-P) three days after September's emergency water diversion had ceased (**Figure 4**). However, when averaged over water column, these values still represent an exceedance of the 0.018 mg/L interim target proposed as part of the 2021-2022 Sliver Lake WQMP, which is based on the total phosphorus total maximum daily load (TMDL) developed for West and East Monponsett Ponds (MassDEP 2022).

Dissolved phosphorus concentrations in Silver Lake ranged from 0.010 mg/L to 0.053 mg/L in September and October 2023 (**Table 2**). This indicates that the majority of phosphorus was present in a readily available form for uptake by algae and cyanobacteria. Similar to observations in 2021-2022, concentrations of dissolved phosphorus also generally increased with depth, lending additional evidence to the conclusion that internal loading (i.e., phosphorus release from nutrient-rich sediments) is now a substantial source of the phosphorus load to Silver Lake.

Figure 5. Total Nitrogen, 2021-2023

Silver Lake and East Monponsett Pond results presented as boxplots of all data collected 2021-2023. Median value appears as the dividing line within the box. Average value appears as an "x." Boxplot whiskers represent highest and lowest observed values within 1.5 times the interquartile range (i.e., the gold box).

Figure 6. Chlorophyll a, 2021-2023

Silver Lake and East Monponsett Pond results presented as boxplots of all data collected 2021-2023. Median value appears as the dividing line within the box. Average value appears as an "x." Boxplot whiskers represent highest and lowest observed values within 1.5 times the interquartile range (i.e., the dark green box).

<u>Nitrogen</u>

Total nitrogen concentrations at the in-lake sample location ranged from 0.34 mg/L to 1.02 mg/L, with highest values observed in bottom waters (**Table 2**). Nitratenitrogen and nitrite-nitrogen were rarely detected. Instead, nitrogen was almost entirely present as Kjeldahl nitrogen, which includes both ammonia and organic forms. The higher concentrations of total Kjeldahl nitrogen in deep waters may be indicative of ammonia release from the sediments. Although the specific mechanisms for ammonia release are different from those for phosphorus release, they are both favored by the low dissolved oxygen concentrations observed in bottom waters of Silver Lake. Similar to phosphorus, this pattern is largely in line with what has been observed over the course of the Silver Lake WQMP (**Figure 5**).

Chlorophyll a

Chlorophyll a concentrations in Silver Lake started off at a record high level during the September 2023 sampling event, reaching 15.2 mg/m³ in surface waters at SLIL-S and 16.2 mg/m³ near the East Monponsett diversion inlet pipe at SLIL-P (**Table 2**). These values are substantially higher than the range of previously observed results from 2021-2022 (**Figure 6**). They are also near or slightly above impairment threshold of 16 mg/m³, per the latest version of MassDEP's *Consolidated Assessment and Listing Methodology* (MassDEP 2022).

The October 2023 chlorophyll a results indicated a return to more typical values for Silver Lake, dropping back to 6.26 mg/m^3 , which is close to the median value for the Silver Lake WQMP (**Table 2** and **Figure 6**).

Chlorophyll a is an indirect measurement of phytoplankton production. Therefore, higher concentrations of chlorophyll a tend to be correlated with higher biomasses of phytoplankton.

Phytoplankton

The September 2023 phytoplankton sample analysis identified cyanobacteria as the dominant taxa in the water

column, constituting 91% of the total biovolume (**Table 2**). Although abundant at both the SLIL-S monitoring location and at SLIL-P near the East Monponsett diversion inlet in Silver Lake, cyanobacteria were not observed above the 70,000 cell/mL level considered to constitute a bloom. However, the cyanobacteria biovolume observed at SLIL-S (4.8 million μ m³/mL) was the highest observed over the course of the Silver Lake WQMP (previous high was in August 2022 when cyanobacteria biovolume was just over 2 million μ m³/mL).

Phytoplankton returned to more typical levels in October 2023, although cyanobacteria were still the dominant taxa in the water column, constituting 64% of total biovolume (**Table 2**). Cyanobacteria cell counts also fell to approximately 2,500 cells/mL from the observed high of more than 32,000 cells/mL in September.

Cyanotoxins

Microcystins were not detected in any of the samples collected from Silver Lake during the 2023 WQMP (**Table 2**).

Parameter	Unit	Month	East Monponsett Pond Diversion (EPD)	Tubbs Meadow Brook (SLT-1)	Silver Lake In-Lake Surface (SLIL-S)	Silver Lake In-Lake Middle (SLIL-M)	Silver Lake In-Lake Bottom (SLIL-B)	Silver Lake In-Lake Near Monponsett Diversion Inlet (SLIL-P)	Jones River (SLT-D)
Dissolved Phosphorus	mg/L	Sep	0.028	0.097	0.010	0.019	0.037	0.007	0.014
		Oct	0.031	0.063	0.017	0.013	0.053	NS	0.016
Total Phosphorus	mg/L	Sep	0.032	0.141	0.016	0.016	0.033	0.015	0.026
		Oct	0.040	0.113	0.033	0.016	0.063	NS	0.167
Nitrite-N mg/L		Sep	<0.010	0.012	<0.010	<0.010	<0.010	<0.010	<0.010
		Oct	<0.010	<0.010	<0.010	<0.010	<0.010	NS	<0.010
Nitrate-N	mg/L	Sep	0.03	<0.02	<0.02	<0.02	<0.02	< 0.02	0.23
		Oct	0.08	0.07	0.03	0.02	<0.02	NS	0.21
Total Kjeldahl Nitrogen	mg/L	Sep	0.49	1.11	0.40	0.34	0.75	0.39	0.17
		Oct	0.61	0.66	0.42	0.34	1.02	NS	0.73
Total Nitrogen	mg/L	Sep	0.52	1.12	0.40	0.34	0.75	0.39	0.40
		Oct	0.69	0.73	0.45	0.36	1.02	NS	0.94
Chlorophyll a	mg/m ³	Sep	8.23	NS	15.2	NS	NS	16.2	NS
		Oct	4.13	NS	6.26	NS	NS	NS	NS
	cells/mL	Sep	3,918	NS	32,177	NS	NS	19,479	NS
		Oct	292	NS	2,494	NS	NS	NS	NS
Cyanobacteria	µm³/mL	Sep	63,810	NS	4,782.941	NS	NS	3,166,036	NS
-		Oct	33,050	NS	349,472	NS	NS	NS	NS
	% bv	Sep	17	NS	91	NS	NS	89	NS
		Oct	8	NS	64	NS	NS	NS	NS
Microcystins	µg/L	Sep	0.87	NS	< 0.30	NS	NS	NS	NS
		Oct	0.30	NS	<0.30	NS	NS	NS	NS

Table 2. Laboratory Analytical Water Quality Results

East Monponsett Pond

Water Temperature

Water temperatures in East Monponsett Pond were 22°C and 15°C at the surface in September and October, respectively (**Table 1**). This is similar to what was observed at the surface of Silver Lake for each sampling event.

Dissolved Oxygen

Field-measured data collected in East Monponsett Pond indicate dissolved oxygen concentrations sufficient to support aquatic life (i.e., above 5.0 mg/L) in both September and October, ranging from 7.70 to 8.86 mg/L (**Table 1**). These values are somewhat higher than those observed in surface waters of Silver Lake on the same dates but are generally comparable to those previously observed at this location in 2022. East Monponsett Pond is too shallow to thermally stratify, so a direct comparison with bottom waters of Silver Lake is not appropriate.

East Monponsett Pond near the City of Brockton diversion intake, October 24, 2023.

Specific Conductance

Field-measured specific conductance in East Monponsett Pond ranged from 180 to 182 μ S/cm, in September and October, respectively (**Table 1**). These values are marginally lower than those observed in 2022. They are also marginally lower than those measured in Silver Lake on the same dates.

<u>рН</u>

Field-measured data collected in East Monponsett Pond in September and October were 6.8 SU (**Table 1**). These observations indicate slightly acidic water and are acidic compared to surface waters of Silver Lake on the same dates. However, these pH measurements are well within the expected value and comparable to observations from 2022.

Turbidity, Apparent Color, and Secchi Depth

Turbidity in East Monponsett Pond ranged from 0.91 NTU in September 2023 to 1.06 NTU in October 2023 (**Table 1**). These values are somewhat higher than what was observed during sampling events in 2022 but are similar to observations from Silver Lake in 2023.

Apparent color was consistent at 10 PCU during both months of the 2023 monitoring program (Table 1).

Secchi depth was also consistent at 1.25 m (4 ft) during both months of the 2023 monitoring program (**Table 1**). This is similar to what was observed in 2022 but lower than observations from Silver Lake in 2023.

Phosphorus

East Monponsett Pond total phosphorus concentrations were 0.032 mg/L in September and 0.040 mg/L in October 2023 (**Table 2**). These observed concentrations were in line with prior sampling results from the Silver Lake WQMP (**Figure 4**).

Dissolved phosphorus concentrations in East Monponsett Pond were 0.028 mg/L in September and 0.031 mg/L in October 2023 (**Table 2**). This indicates that the majority of phosphorus was present in a readily available form for uptake by algae and cyanobacteria.

<u>Nitrogen</u>

Total nitrogen concentrations at the East Monponsett Pond sample location were 0.52 mg/L in September and 0.69 mg/L in October 2023 (**Table 2**). The September total nitrogen concentration was largely in line with what has been observed in East Monponsett Pond over the course of the Silver Lake WQMP and, while the October concentration was the highest observed at this location as part of the Silver Lake WQMP, it was not an extreme value (**Figure 5**). Total Kjeldahl nitrogen was the dominant form observed, contributing more than 85% of the overall nitrogen concentration. Nitrate-nitrogen was also detected at low levels during both sampling rounds, although nitrite-nitrogen was not.

Chlorophyll a

Chlorophyll a concentrations in East Monponsett Pond were in line with previously observed values collected as part of the Silver Lake WQMP (**Table 2** and **Figure 6**).

Chlorophyll a is an indirect measurement of phytoplankton production. Therefore, higher concentrations of chlorophyll a tend to be correlated with higher biomasses of phytoplankton.

Phytoplankton

Although cyanobacteria were present in both the September and October 2023 phytoplankton samples from East Monponsett Pond, cell counts were well below bloom levels and cyanobacteria biovolume accounted for less than 20% of the total observed in both months (**Table 2**). The phytoplankton assemblage was balanced in September with no single dominant taxa group. This switched to a non-harmful diatom-dominated assemblage in October, which is a typical seasonal shift in temperate lakes and ponds.

Cyanotoxins

Microcystins were detected in East Monponsett Pond samples from both the September and October 2023 site visits (**Table 2**). The September concentration was $0.87 \mu g/L$, decreasing to $0.30 \mu g/L$ in October. These concentrations were well below the Massachusetts recreational advisory level of 8 $\mu g/L$ but were at or above the US EPA drinking water health advisory technical guidance level of $0.30 \mu g/L$. The drinking water health advisory guidance only applies to finished drinking water but has been used as part of the Silver Lake WQMP for context because water from East Monponsett Pond is diverted to Silver Lake multiple times each year. In 2023, this included a diversion for several days just prior to the September sampling event.

Tubbs Meadow Brook and Jones River

Discharge

Streamflows observed in Tubbs Meadow Brook at SLT-1 were higher during the September 2023 visit than in October and higher than any flows reported from those months in 2022 (**Table 1**). This likely reflected the influence of months of wetter than normal conditions in 2023, which peaked in September, when two to four inches more than normal falling areawide that month.

Conversely, the Jones River at SLT-D was not flowing at all during the September 2023 visit and only minimal flow was observed during the October visit (**Table 1**). The mostly stagnant flow conditions observed during these visits to SLT-D likely impacted water quality results, as well.

Dissolved Oxygen

Field measured dissolved oxygen concentrations in Tubbs Meadow Brook at SLT-1 were sufficient to support aquatic life (greater than 5.0 mg//L) in

October; however, hypoxic conditions were documented in September (Table 1).

Dissolved oxygen concentrations in the Jones River at SLT-D were insufficient to support aquatic life (less than 5.0 mg/L) in both months (**Table 1**). Similar to observations in 2021-2022, hypoxic conditions at this location tend to be associated with low flow conditions.

Specific Conductance

Specific conductance in Tubbs Meadow Brook at SLT-1 was 135.8 μ S/cm in September 2023 and 163.6 μ S/cm in October (**Table 1**).

In the Jones River at SLT-D, specific conductance was 124.8 μ S/cm in September 2023 and 121.0 μ S/cm in October (**Table 1**).

Specific conductance at both locations was on the low end or somewhat lower than values observed as part of the Silver Lake WQMP in 2021-2022.

pН

Field measured pH values were 7.8 and 6.6 in Tubbs Meadow Brook at SLT-1 in September and October 2023, respectively (**Table 1**). These values are higher than (less acidic) than those observed at similar times during the 2021-2022 Silver Lake WQMP.

In the Jones River at SLT-D, pH was 4.9 and 6.6 in September and October 2023, respectively (**Table 1**). The very low pH value observed in September may indicate that the pooled water in the channel was primarily left over from recent precipitation events, rather than residual water from prior Silver Lake outflows or groundwater inseepage.

Apparent Color

Similar to observations collected as part of the 2021-2022 Silver Lake WQMP, apparent color was unremarkable during the 2023 monitoring program, remaining at 20 PCU or lower in both September and October (**Table 1**).

Phosphorus

Total phosphorus concentrations in Tubbs Meadow Brook at SLT-1 were 0.141 and 0.113 mg/L in September and October 2023, respectively (**Table 2**).

Total phosphorus concentrations in the Jones River at SLT-D were 0.026 and 0.167 mg/L in September and October 2023, respectively (**Table 2**).

Dissolved phosphorus concentrations in Tubbs Meadow Brook at SLT-1 were 0.097 mg/L and 0.063 mg/L in September and October 2023, respectively (**Table 2**).

Dissolved phosphorus concentrations in the Jones River at SLT-D were 0.014 mg/L and 0.016 mg/L in September and October 2023, respectively (**Table 2**).

These values for total and dissolved phosphorus are generally consistent with the concentrations observed as part of the 2021-2022 Silver Lake WQMP, although dissolved phosphorus in 2023 was on the high end prior observations for Tubbs Meadow Brook.

<u>Nitrogen</u>

The total nitrogen concentration in Tubbs Meadow Brook at SLT-1 was 1.12 mg/L in September 2023 (**Table 2**), making it the highest concentration observed at this location as part of the Silver Lake WQMP. In October 2023, the concentration of total nitrogen dropped to 0.73 mg/L, which is generally comparable to concentrations observed in 2021-2022 as part of the Silver Lake WQMP. The majority of nitrogen was in the form of Kjeldahl nitrogen, which is also similar to prior observations.

Total nitrogen concentrations in the Jones River at SLT-D were 0.40 mg/L and 0.94 mg/L in September and October 2023, respectively (**Table 2**). These values are comparable to concentrations observed as part of the 2021-2022 Silver Lake WQMP. Nitrate-nitrogen was the primary form of nitrogen sampled in September 2023 but was secondary to total Kjeldahl nitrogen in October. This pattern is similar to what was observed in as part of the 2021-2022 Silver Lake WQMP, particularly with regard to the tendency toward higher proportion of nitrate-nitrogen in the Jones River at SLT-D than most other water quality monitoring stations.

Findings and Recommendations

Findings

The supplemental water quality data collected in September and October 2023 support and reinforce the key findings of the 2021-2022 Silver Lake WQMP. Although no acute or immediate impact of the September 14-17, 2023 emergency diversion from East Monponsett Pond was specifically identified based on the water quality data alone, the 2023 Silver Lake WQMP did illuminate some additional findings of potential interest, including the following:

- Hypoxic and anoxic conditions can persist in waters of Silver Lake as shallow as 10 m (33 ft) into late October. In 2021 and 2022, low dissolved oxygen concentrations were measured in shallow waters in early October but were relegated to the deepest waters (i.e., deeper than 15 m [9 feet]) late in the month.
- Precipitation was abundant in 2023, resulting in the need for emergency water diversion from East Monponsett Pond in September. Yet, the flow conditions in the Jones River at SLT-D were comparable to those observed in 2022 (a drought year), reinforcing the observation that downstream flow into the Jones River can be driven more by management of diversions and withdrawals than by seasonal and interannual patterns in weather conditions. Beyond the obvious impacts on downstream biology, prior modeling completed using the 2022 WQMP dataset suggests that reduced discharges to the Jones River make nutrients from the East Monponsett diversion more likely to be retained and impactful in Silver Lake. This can drive excessive phytoplankton growth in the short term and also contribute to future cycles of internal nutrient loading from the sediments over the long term.
- Silver Lake can experience very high cyanobacteria levels (cell counts and biovolume) in September and October. This was previously hypothesized as likely to occur but data from 2022 indicated peak cyanobacteria levels in March and August. Although the conditions observed on the specific sampling dates in 2023 technically fell below "bloom" thresholds and were not accompanied by microcystin toxins, cyanobacteria were present at the highest levels observed as part of the Silver Lake WQMP. Additionally, the highest chlorophyll a laboratory results observed as part of the Silver Lake WQMP were obtained in September 2023. Finally, aerial photographs taken by the Jones River Watershed Association on September 14, 2023 provide visual evidence of a blue-green color in the cove near the East Monponsett diversion inlet pipe.
- Cyanotoxins (microcystins) were detected near the East Monponsett Pond diversion intake for the first time as part of the Silver Lake WQMP. Although the concentrations were well below the Massachusetts recreational advisory level, this was the first direct evidence of microcystins in proximity to the diversion intake. Whether cyanotoxins present in this location would be likely to have an impact on cyanotoxin levels in Silver Lake if water were being actively diverted was beyond the scope of this study. However, the starting concentration in each water body, the nature of the toxin presence (intracellular or extracellular), flow rate, time of travel between the intake and Silver Lake, and possible biodegradation processes within the diversion pipe would likely be factors to consider.

Recommendations for 2024

Given the findings of the original Silver Lake Water Quality Monitoring Program and the two months of focused monitoring in 2023, TRC recommends the following actions for consideration in 2024.

Lake Management Plan

As stated in the original 2021-2022 Silver Lake Water Quality Monitoring Program Technical Memorandum, the development of a lake management plan could provide the CPCWDC and other stakeholders with a pathway to alleviating impairments already listed by MassDEP and addressing other documented water quality and ecological management issues. This will likely require a comprehensive regional approach to ensure the following:

- Stakeholder input is adequately considered in setting the management goals and means of evaluating success.
- The selected management interventions can be appropriately funded and coordinated among the parties responsible for managing watershed lands, water bodies, and water infrastructure.
- The plan achieves the desired improvements over the long term.

The Old Colony Planning Council recently began the process of developing a stakeholder-driven regional water plan. While this plan will likely provide a broad framework for sustainable regional water supply across 17 communities, it is likely that a more focused lake management plan will still be needed to provide the necessary details specific to the management of the Silver Lake system. The lake management plan will need to identify watershed management actions, water supply management actions, and in-lake management actions.

One action that the CPCWDC could consider initiating in 2024 would be an initial feasibility study of in-lake biological, chemical, and physical management options presented in the *2021-2022 Silver Lake Water Quality Monitoring Program Technical Memorandum*. This would develop the information needed to help select and eventually implement the in-lake management actions that would ultimately become a part of the comprehensive lake management plan. It could also be used as a tool to begin budgeting for design, permitting, and implementation of in-lake water quality improvement solutions. Given the amount of directly usable data already collected as part of the Silver Lake WQMP, this feasibility study could probably be completed for \$30,000 or less.

Alternatively, or in addition to this, the CPCWDC could consider initiating a watershed assessment to help identify possible opportunities for water quality improvement in Silver Lake's natural watershed (i.e., lands that drain to one of the three tributaries or directly to Silver Lake). This would develop the information needed to help select and eventually implement the watershed-based actions that would ultimately become a part of the comprehensive lake management plan. The Silver Lake WQMP collected less information on watershed conditions than in-stream and in-lake, so some additional field investigation and coordination with watershed municipalities would be needed to better inform potential locations and concepts for watershed improvement projects. With this understanding, the costs for a watershed assessment are likely to be higher – at least \$50,000 for a narrowly focused study. A more ambitious watershed assessment that seeks to identify locations and develop concept designs for green infrastructure, stormwater Best Management Practices (BMPs), and/or stream channel and floodplain restoration, would exceed \$100,000.

Monitoring

Some level of ongoing monitoring is recommended for 2024, as it will be important in helping to track management issues and may also provide critical early detections of incipient water quality issues or new invasive species that could be addressed early on, before they become larger scale problems. The recommended monitoring program would remain comprehensive enough to ensure collection of the most useful data for tracking lake and watershed water quality trends but could also be streamlined to focus on the most critical information and maximize cost-effectiveness. Recommended and optional monitoring components are summarized in **Table 3**, along with recommended frequency and locations.

A recommended budget for the monitoring program described above would be \$40,000 to \$75,000, depending on the duration, number of sampling locations, and number of visits.

Ideally, future monitoring would eventually include deployment and operation of a water quality data buoy with telemetry, so that stakeholders would be able to view in-lake data in real time. Although these units can be rented, it is usually more cost-effective to purchase them if they will be used for more than one season.

14

If the CPCWDC elected to purchase a water quality data buoy system, the anticipated budget for the purchase would be expected to range from \$40,000 for simple but rugged, fixed-location models to \$100,000 or more for higher-end and profiling models. An annual operations and maintenance budget of at least \$20,000 to \$30,000 would also be recommended. This would include annual re-deployment, a data plan, web hosting for real-time data viewing, regular visits to clean and maintain the equipment, and annual winterizing.

Component	Frequency	Silver Lake	East Monponsett Pond	Tubbs Meadow Brook	Jones River (Outlet)	Furnace Pond	Little Brook	Mirage Brook	Notes
Dissolved oxygen	Monthly	•	•	•	•	0	0	0	
Temperature	Monthly	•	•	•	•	0	0	0	
pН	Monthly	0	0	0	0	0	0	0	
ORP*	Monthly	0							More complete measure of conditions that favor sediment phosphorus release and other undesirable chemical processes than dissolved oxygen. May want to add SOP to QAPP (minor change).
Specific conductance	Monthly	0	0	0	0	0	0	0	
Secchi disk	Monthly	•	•						
Turbidity	Monthly	0	0	0	0	0	0	0	
Chlorophyll a	Monthly	•	•			0			
Phycocyanin*	Monthly	0	0			0			Pigment specific to cyanobacteria. May want to add SOP to QAPP (minor change).
Phytoplankton	Monthly	•	•			0			
Cyanotoxins	Monthly	•	•			0			
Total phosphorus	Monthly	•	•	•	•	0	0	0	
Dissolved phosphorus	Monthly	0	0	0	0	0	0	0	
Total nitrogen	Monthly	•	•	•	•	0	0	0	
Ammonia nitrogen	Monthly	0	0	0	0	0	0	0	
Aquatic plants	Annually in August	0	0			0			Littoral zone (up to 20 ft)
Discharge	Monthly			•	•		0	0	

Table 3. Recommended Monitoring Program for 2024

*New component

• = Recommended

 \circ = Optional

Although ongoing monitoring of Silver Lake is recommended, TRC also recommends that the CPCWDC coordinate its plans for future monitoring with the City of Brockton as feasible. This will serve to minimize potential duplication of efforts and may allow improved opportunities for data sharing and collaboration.

Central Plymouth County Water District Commission December 29, 2023

It has been a pleasure to work with you on this project. Should you have any questions, please contact the undersigned at (401) 330-1204 or mladewig@trccompanies.com.

Sincerely,

TRC ENVIRONMENTAL CORPORATION

Mat DZ Ling

Matt Ladewig, CLM Project Director

Attachments: A. Laboratory Reports B. Updated Water Quality Database (Digital)

Attachment A: Laboratory Reports

ANALYTICAL REPORT

Lab Number:	L2355209
Client:	TRC Companies, Inc.
	10 Hemingway Dr.
	2nd Fl
	East Providence, RI 02915
ATTN:	Matt Ladewig
Phone:	(401) 330-1204
Project Name:	SILVER LAKE WQMP
Project Number:	016120.0000.0000
Report Date:	09/27/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:09272315:16

Project Name:SILVER LAKE WQMPProject Number:016120.0000.0000

 Lab Number:
 L2355209

 Report Date:
 09/27/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2355209-01	SLIL-S	WATER	PLYMOUTH COUNTY	09/20/23 10:15	09/20/23
L2355209-02	SLIL-SS	WATER	PLYMOUTH COUNTY	09/20/23 10:25	09/20/23

Project Name: SILVER LAKE WQMP Project Number: 016120.0000.0000

Lab Number: L2355209 Report Date: 09/27/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: SILVER LAKE WQMP Project Number: 016120.0000.0000
 Lab Number:
 L2355209

 Report Date:
 09/27/23

Case Narrative (continued)

Sample Receipt

The samples were received at the laboratory above the required temperature range. The samples were transported to the laboratory in a cooler with ice and delivered directly from the sampling site. This is considered acceptable since the samples were in the process of cooling.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Curlen Walker Cristin Walker

Title: Technical Director/Representative

Date: 09/27/23

INORGANICS & MISCELLANEOUS

							S	Serial_No:09	272315:16	
Project Name:	SILVER LA	KE WQM	Р				Lab No	umber:	L2355209	
Project Number:	016120.000	016120.0000.0000					Repor	Report Date: 09/27/23		
				SAMPLE	RESUL	rs				
Lab ID:	L2355209-0	1					Date C	collected:	09/20/23 10:15	
Client ID:	SLIL-S	SLIL-S Date Received: 09/20/23								
Sample Location:	PLYMOUTH	I COUNT	Y				Field P	rep:	Not Specified	
Sample Depth:										
Matrix:	Water									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lat)								
Chlorophyll A	15.2		mg/m3	2.00	NA	1	09/21/23 07:20	09/22/23 18:5	5 121,10200H	JAI

	Serial_		
Project Name:	SILVER LAKE WQMP	Lab Number:	L2355209
Project Number:	016120.0000.0000	Report Date:	09/27/23
		SAMPLE RESULTS	
Lab ID:	L2355209-02	Date Collected:	09/20/23 10:25
Client ID:	SLIL-SS	Date Received:	09/20/23
Sample Location:	PLYMOUTH COUNTY	Field Prep:	Not Specified

MDL

NA

RL

2.00

Dilution

Factor

1

Date

Prepared

1	
	ANALYTICAL

Analytical Method

121,10200H

Analyst

JAI

Date

Analyzed

09/21/23 07:20 09/22/23 18:55

Matrix:

Parameter

Chlorophyll A

Sample Depth:

General Chemistry - Westborough Lab

Water

15.5

Result Qualifier Units

mg/m3

Project Name:SILVER LAKE WQMPProject Number:016120.0000.0000

 Lab Number:
 L2355209

 Report Date:
 09/27/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab for sam	ple(s): 01	-02 Ba	tch: WC	G1830155-	1			
Chlorophyll A	ND	mg/m3	2.00	NA	1	09/21/23 07:20	09/22/23 18:55	121,10200H	JAI

Project Name:	SILVER LAKE WQMP	L	ab Duplicate Analy	La	ab Numbe	r: L2355209	
Project Number:	016120.0000.0000		Batch Quality Control	R	eport Date	a: 09/27/23	
Parameter		Native Sample	Dunlicate Sample	Units	RPD	Qual	RPD Limits

. .

	Native Sam	pie i	Duplicate Sample	Units	NF D	Quai		
General Chemistry - Westborough Lab Associated sample	e(s): 01-02	QC Batch ID	: WG1830155-2	QC Sample:	L2355211-01	Client ID:	DUP Sample	
Chlorophyll A	8.23		8.05	mg/m3	2		35	

Project Name: SILVER LAKE WQMP Project Number: 016120.0000.0000

Serial_No:09272315:16 Lab Number: L2355209 *Report Date:* 09/27/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information

Container Info	Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2355209-01A	Brown Plastic 1000ml unpreserved	А	NA		18.5	Y	Absent		CHLORO-A(1)
L2355209-01B	Brown Plastic 1000ml unpreserved	А	NA		18.5	Y	Absent		CHLORO-A(1)
L2355209-02A	Brown Plastic 1000ml unpreserved	А	NA		18.5	Y	Absent		CHLORO-A(1)
L2355209-02B	Brown Plastic 1000ml unpreserved	А	NA		18.5	Y	Absent		CHLORO-A(1)

Project Name: SILVER LAKE WQMP

Project Number: 016120.0000.0000

Lab Number: L2355209

Report Date: 09/27/23

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name: SILVER LAKE WQMP

Project Number: 016120.0000.0000

Lab Number: L2355209 Report Date: 09/27/23

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: Data Usability Report

¹

Project Name: SILVER LAKE WQMP

Project Number: 016120.0000.0000

Serial_No:09272315:16

Lab Number: L2355209

Report Date: 09/27/23

Data Qualifiers

- \mathbf{ND} Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name: SILVER LAKE WQMP Project Number: 016120.0000.0000

 Lab Number:
 L2355209

 Report Date:
 09/27/23

REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethvltoluene.

EPA 8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H, B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: AI, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: AI, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

1	F CUSTO	CUSTODY PAGE OF			Date Rec'd in Lab: 9 - 20 - 2023					ALPHA Job #: 2355209								
		Project Info	rmation			Re	FAX	Infor	matio	n Data	a Del	ivera	bles	Bill	ing Ir Same i	nform as Clier	nation nt info	PO #:
Westborough, MA TEL: 508-898-9220	Mansfield, MA TEL: 508-822-9300	Project Name:	Silver Lake W	/QMP		Re	ADEx gulat	ory R	Requir	emen	Add'i D Is/Re	elivera	^{bles}	5				변제 모그램
Client Informat	ion	Project Locatio	n: Plymouth (County		Sta	te/Fed	Progra	m				_	Crite	ria			
Client: TRC Comp	anies, Inc.	Project #: 0161	20.0000.0000	(Old: C6	(63)		-104								201	100		THE OF THE OWNER
Address: 10 Hemi	ngway Drive	Project Manag	er: Matt Ladew	vig														
East Providence, F	Rhode Island 02915	ALPHA Quote	#:										_	_	_	_	_	1 .
Phone: 401-330-12	246	Turn-Around	I Time			ANALYSIS					<u> </u>				SAMPLE HANDLING			
Fax: Stephanie.Ma	artin@TRCCompanies.com	Standard	Standard Rush (ONLY IF PRE-APPROVED)															Filtration
Email: (See above)																	Not Needed
These samples have	been Previously analyzed by Alpha	Due Date:	Time:		:*													Lab to do
Other Project Sp	ecific Requirements/Comme	nts/Detection Limi	ts:			yll A												Lab to do (Please specify below)
ALPHA Lab ID (Lab Use Only)	Sample ID	Coll	ection Time	Sample Matrix	Sampler's Initials	Chloroph												Sample Specific Comments
55209 -01	SLIL-S	9/20/23	1015	sw	A()													2
- 02	SLIL-SS	9/20/23	1025	SW	AO	\boxtimes												1
																닏	님	
								님	⊢⊢	님	븝	븜	님	H	H	H	+H-	
							님	븜	님	님	븜	븜	片	H	H	븝	븜	
						H	H	님	H	H	H	금	H	H	H	h	片	
							1	T			Ē							
Call States																		
				0	Container Type	Р	Р	-	•	-	•	3		*	•	*.		
Relinquish				Preservative		н	н -	× × 3	• •			÷	-	-	•		Please print clearly, legibly and completely. Samples car	
			hed By:			Date/Time			Received By:				Date/Time				tumaround time clock will not start until any ambiguities are resolved. All samples	
FORM NOI OI JULIUN		m Rapuster	N AAL		9/20			H. Pur Att				9.20.23 1600			600	submitted are subject to Alpha's Payment Terms.		
Page 16 of 16		17 1	Ruit A	AL	2.20.2	3 /	800	6	the	Li	-	~	_	91	17	3 k	500	

ANALYTICAL REPORT

Lab Number:	L2355211
Client:	TRC Companies, Inc.
	10 Hemingway Dr.
	2nd Fl
	East Providence, RI 02915
ATTN:	Matt Ladewig
Phone:	(401) 330-1204
Project Name:	SILVER LAKE WQMP
Project Number:	016120.0000.0000
Report Date:	09/27/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:09272315:24

Project Name:	SILVER LAKE WQMP			Lab Number:	L2355211
Project Number:	016120.0000.0000			Report Date:	09/27/23
Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2355211-01	EPD	WATER	PLYMOUTH COUNTY	09/20/23 13:40	09/20/23

Project Name: SILVER LAKE WQMP Project Number: 016120.0000.0000

Lab Number: L2355211 Report Date: 09/27/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Lab Number:
 L2355211

 Report Date:
 09/27/23

Case Narrative (continued)

Sample Receipt

The sample was received at the laboratory above the required temperature range. The sample was transported to the laboratory in a cooler with ice and delivered directly from the sampling site. This is considered acceptable since the sample was in the process of cooling.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Curlen Walker Cristin Walker

Title: Technical Director/Representative

Date: 09/27/23

INORGANICS & MISCELLANEOUS

							S	Serial_No:09	272315:24	
Project Name:	SILVER LAK	KE WQM	Р				Lab Nu	umber:	L2355211	
Project Number:	016120.000	0.0000					Report	t Date:	09/27/23	
				SAMPLE	RESUL	ſS				
Lab ID:	L2355211-0	1					Date C	ollected:	09/20/23 13:40	
Client ID:	EPD						Date R	eceived:	09/20/23	
Sample Location:	PLYMOUTH	COUNT	Y				Field P	rep:	Not Specified	
Sample Depth:										
Matrix:	Water					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - We	stborough Lab)								
Chlorophyll A	8.23		mg/m3	2.00	NA	1	09/21/23 07:20	09/22/23 18:5	5 121,10200H	JAI

 Lab Number:
 L2355211

 Report Date:
 09/27/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab for sa	mple(s): 01	Batch:	WG18	330155-1				
Chlorophyll A	ND	mg/m3	2.00	NA	1	09/21/23 07:20	09/22/23 18:55	121,10200H	JAI

Project Name:	SILVER LAKE WQMP	L	ab Duplicate Analy Batch Quality Control	La	ab Number:	L2355211	
Project Number:	016120.0000.0000				R	eport Date:	09/27/23
Parameter		Native Sample	Dunlicate Sample	Units	RPD	Qual	RPD Limits

	Native Sample	Duplicate Sam	pie Offica		Quai	
General Chemistry - Westborough Lab Associated samp	e(s): 01 QC Batch ID:	WG1830155-2	QC Sample: L23552	211-01 CI	lient ID: EPD	
Chlorophyll A	8.23	8.05	mg/m3	2		35

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C Pres		Seal	Date/Time	Analysis(*)
L2355211-01A	Brown Plastic 1000ml unpreserved	А	NA		18.5	Y	Absent		CHLORO-A(1)
L2355211-01B	Brown Plastic 1000ml unpreserved	А	NA		18.5	Y	Absent		CHLORO-A(1)

YES

Project Number: 016120.0000.0000

Lab Number: L2355211

Report Date: 09/27/23

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Project Number: 016120.0000.0000

Lab Number: L2355211 Report Date: 09/27/23

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

¹

Project Number: 016120.0000.0000

Serial_No:09272315:24

Lab Number: L2355211

Report Date: 09/27/23

Data Qualifiers

- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

 Lab Number:
 L2355211

 Report Date:
 09/27/23

REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethvltoluene.

EPA 8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H, B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: AI, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: AI, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

1	CHAIN OF	CUSTO	DY	PAGE C)F	Da	te Rec'o	d in Lat	o: 9	-20) - C	202	3	ALI	PHA	Job #	: L :	355211
		Project Info	mation			Re	FAX	Infori	natio	n Dat	a Del EMAIL	livera	bles	Bill	ing l i Same	nform as Clier	nation Int info	PO #:
Westborough, MA TEL: 508-898-9220 FAX: 508-898-9193	Mansfield, MA TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	Silver Lake	WQMP		Re	ADEx	ory R	lequir	emen	Add'l D	elivera	^{bles} Limit	s	34	15		
Client Informat	ion	Project Locatio	n: Plymouth	County		Sta	ite/Fed i	Prograi	m				_	Cnite	iria		_	
Client: TRC Comp	anies, Inc.	Project #: 0161	20.0000.000	00 (Old: C663	3)		max			CHO:								
Address: 10 Hemi	ngway Drive	Project Manag	er: Matt Lade	ewig		_									_			
East Providence, F	Rhode Island 02915	ALPHA Quote	#:								_					_	_	
Phone: 401-330-12	246	Turn-Around	Time			AN	IALYS	SIS	1	T	1	1	È	-	1	1	1	SAMPLE HANDLING
Fax: Stephanie.Ma Email: (See above	ntin@TRCCompanies.com	Standard		ISH (ONLY IF PR	RE-APPROVED													Filtration L Done H Not Needed
These samples have	been Previously analyzed by Alpha	Due Date:	Time:	19					1									Lab to do B
Other Project Sp	ecific Requirements/Commer	nts/Detection Limi	is:															Lab to do (Please specify below) S
ALPHA Lab ID (Lab Use Only)	Sample ID	Coli	ection	Sample Matrix	Sampler's Initials	Chlorophyll												Sample Specific
55211 - 01	EPD	0/20/23	12.11)	CW	AD	M					Π	П			İΠ			1
	EFO	5720/25	1940	500	110													0
Sec. Star																		
															Ц	님	닏	
							Ш	Ш	Ш	Ш	Ц	Ш			Ц	ш	Ш	
				Co	ntainer Type Preservative	P A	P H	-	•	*	•	*	•	•	•	•	3 9	Please print clearly, legibly and completely. Samples can
		and	Relips			9-20	ate/Time	; 5:00	En	ml	Receiv	ed By:	API	9.2	9/20	Date/Tin	1500	turnaround time clock will not start until any ambiguities are resolved. All samples submitted are subject to Alpha's Payment Terms.
(1947, 5-3431-12)		h/.1	Quin A	fith "	9.20.2	3 /	800	0	U.	li	2		2	9/2	0/23	130	ie	and a second

ANALYTICAL REPORT

Lab Number:	L2355212
Client:	TRC Companies, Inc.
	10 Hemingway Dr.
	2nd Fl
	East Providence, RI 02915
ATTN:	Matt Ladewig
Phone:	(401) 330-1204
Project Name:	SILVER LAKE WQMP
Project Number:	016120.0000.0000
Report Date:	09/27/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:09272315:25

Project Name:	SILVER LAKE WQMP			Lab Number:	L2355212
Project Number:	016120.0000.0000			Report Date:	09/27/23
Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2355212-01	SLIL-P	WATER	PLYMOUTH COUNTY	09/20/23 11:30	09/20/23

Lab Number: L2355212 Report Date: 09/27/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

 Lab Number:
 L2355212

 Report Date:
 09/27/23

Case Narrative (continued)

Sample Receipt

The sample was received at the laboratory above the required temperature range. The sample was transported to the laboratory in a cooler with ice and delivered directly from the sampling site. This is considered acceptable since the sample was in the process of cooling.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Curlen Walker Cristin Walker

Title: Technical Director/Representative

Date: 09/27/23

INORGANICS & MISCELLANEOUS

							S	Serial_No:09	272315:25	
Project Name:	SILVER LAP	KE WQM	Р				Lab No	umber:	L2355212	
Project Number:	016120.000	0.0000					Repor	t Date:	09/27/23	
				SAMPLE	RESUL	rs				
Lab ID:	L2355212-0	1					Date C	collected:	09/20/23 11:30	
Client ID:	SLIL-P						Date R	eceived:	09/20/23	
Sample Location:	PLYMOUTH	COUNT	Y				Field P	rep:	Not Specified	
Sample Depth:										
Matrix:	Water					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - We	stborough Lat)								
Chlorophyll A	16.2		mg/m3	2.00	NA	1	09/20/23 23:11	09/22/23 18:5	5 121,10200H	JAI

 Lab Number:
 L2355212

 Report Date:
 09/27/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab for sam	ple(s): 01	Batch:	WG18	330015-1				
Chlorophyll A	ND	mg/m3	2.00	NA	1	09/20/23 23:11	09/22/23 18:55	121,10200H	JAI

Project Name: Project Number:	016120.0000.0000		Batch Quality Control		R	eport Date	e: 09/27/23
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits

General Chemistry - Westborough Lab Associated sample(s): (01 QC Batch ID:	WG1830015-2	QC Sample: L235521	2-01 C	lient ID: SLIL-P	
Chlorophyll A	16.2	15.6	mg/m3	4		35

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information			Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L2355212-01A	Brown Plastic 1000ml unpreserved	А	NA		18.5	Y	Absent		CHLORO-A(1)	
L2355212-01B	Brown Plastic 1000ml unpreserved	А	NA		18.5	Y	Absent		CHLORO-A(1)	

YES

Project Number: 016120.0000.0000

Lab Number: L2355212

Report Date: 09/27/23

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Project Number: 016120.0000.0000

Lab Number: L2355212 Report Date: 09/27/23

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

¹

Project Number: 016120.0000.0000

Serial_No:09272315:25

Lab Number: L2355212

Report Date: 09/27/23

Data Qualifiers

- \mathbf{ND} Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

 Lab Number:
 L2355212

 Report Date:
 09/27/23

REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethvltoluene.

EPA 8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H, B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: AI, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: AI, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	CHAIN OF	CUSTO	DY	PAGE	OF	Da	te Rec'	d in Lat	»: 9	-20) - (202	.3	AL	PHA	Job #	: 12	1355212
		Project Info	rmation			R	FAX	Infor	matio	n Dat	a Del EMAIL	livera	bles	Bill	ing li Same	n form as Clie	nation nt info	PO #:
Westborough, MA TEL: 508-898-9220 FAX: 508-898-9193	Mansfield, MA TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	Silver Lake	WQMP		Re	ADEx egulat	ory R	lequir	emen	Add'i D	elivera	^{bles}	s		оњ	88	
Client Informat	ion	Project Locatio	n: Plymouth	County		Sta	ite/Fed	Progra	m					Crite	via			
Client: TRC Comp	panies, Inc.	Project #: 0161	20.0000.000	00 (Old: C66	3)			-	-		-			1			Ser.	Same Sul and
Address: 10 Hemi	ngway Drive	Project Manag	er: Matt Lade	ewig														
East Providence, F	Rhode Island 02915	ALPHA Quote	#:			_						_	_		_			1 .
Phone: 401-330-1	246	Turn-Around	Time			_AN	ALYS	SIS	-	-	-	-	-	-	-	1	1	SAMPLE HANDLING
Fax: Stephanie.Ma	artin@TRCCompanies.com	Standard		ISH (ONLY IF P	RE-APPROVED													Filtration L
Email: (See above)									1								Not Needed
These samples have	been Previously analyzed by Alpha	Due Date:	Time:	2						1								Lab to do B
Other Project Sp	ecific Requirements/Commer	its/Detection Limi	ts:			A II												Lab to do (Please specify below)
ALPHA Lab ID (Lab Use Only)	Sample ID	Coll	ection Time	Sample Matrix	Sampler's Initials	Chlorophy												Sample Specific Comments
5212 - 01	SLIL-P	9/20/23	1130	SW	AO													2
Sector and Sector			j															
						ЦЦ	님	닏		Ц		님	님				님	
							님	님	님				님			님	님	
					_	14	님	님	H	吕	H	븜	H	븜	H	븜	님	
					-	+	븜	믐	H	H	H	H	븜	늼	Η	H	븜	
				C	Preservative	A	н	-			-	<u>a</u>	-		-	-		Please print clearly, legibly
			/ Relind	uisbed By:		D	ate/Time	e			Receiv	ed By:			10	ate/Tin	ne	not be logged in and turnaround time clock will not
FORM NO: 01-01(INJ) (mv. 5-440-12)		alder	m Ce	ensh	AAL	9/20	23	500	Eus	n Rey	mend	4 Ar	ADI	2.20	9/2	0/23	15a 98	start until any ambiguities are resolved. All samples submitted are subject to Alpha's Payment Terms.
Page 15 of 15		t t	his	i AA	L 7.	10-20	3 /	806	les	la	i c	~		- 7	21	23 18	06	

ANALYTICAL REPORT

Lab Number:	L2355213
Client:	TRC Companies, Inc.
	10 Hemingway Dr.
	2nd Fl
	East Providence, RI 02915
ATTN:	Matt Ladewig
Phone:	(401) 330-1204
Project Name:	SILVER LAKE WQMP
Project Number:	016120.0000.0000
Report Date:	09/27/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:09272315:25

Project Name:	SILVER LAKE WQMP			Lab Number:	L2355213
Project Number:	016120.0000.0000			Report Date:	09/27/23
Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2355213-01	SLIL-F	WATER	PLYMOUTH COUNTY	09/20/23 10:15	09/20/23

Lab Number: L2355213 Report Date: 09/27/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

 Lab Number:
 L2355213

 Report Date:
 09/27/23

Case Narrative (continued)

Sample Receipt

The sample was received at the laboratory above the required temperature range. The sample was transported to the laboratory in a cooler with ice and delivered directly from the sampling site. This is considered acceptable since the sample was in the process of cooling.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Curlen Walker Cristin Walker

Title: Technical Director/Representative

Date: 09/27/23

INORGANICS & MISCELLANEOUS

							S	Serial_No:09	_No:09272315:25		
Project Name:	SILVER LAK	KE WQM	Р				Lab No	umber:	L2355213		
Project Number:	016120.000	0.0000					Repor	t Date:	09/27/23		
				SAMPLE	RESUL	rs					
Lab ID:	L2355213-0 ⁻	1					Date C	collected:	09/20/23 10:15		
Client ID:	SLIL-F						Date R	eceived:	09/20/23		
Sample Location:	PLYMOUTH	COUNT	Y				Field P	rep:	Not Specified		
Sample Depth:											
Matrix:	Water					Dilution	Date	Date	Analytical		
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst	
General Chemistry - We	stborough Lab)									
Chlorophyll A	ND		mg/m3	2.00	NA	1	09/20/23 23:11	09/22/23 18:5	5 121,10200H	JAI	

 Lab Number:
 L2355213

 Report Date:
 09/27/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab for sam	ple(s): 01	Batch:	WG18	330015-1				
Chlorophyll A	ND	mg/m3	2.00	NA	1	09/20/23 23:11	09/22/23 18:55	121,10200H	JAI

Project Name:	SILVER LAKE WQMP	Lab Duplicate Analysis Batch Quality Control	Lab Number:	L2355213
Project Number:	016120.0000.0000		Report Date:	09/27/23

Parameter	Native S	ample	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated san	nple(s): 01	QC Batch ID:	WG1830015-2	QC Sample: L23552	12-01	Client ID: D	UP Sample
Chlorophyll A	16.2	2	15.6	mg/m3	4		35

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal				
A	Absent				

Container Information		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	pН	pН	deg C	leg C Pres	Seal	Date/Time	Analysis(*)
L2355213-01A	Brown Plastic 1000ml unpreserved	А	NA		18.5	Y	Absent		CHLORO-A(1)
L2355213-01B	Brown Plastic 1000ml unpreserved	А	NA		18.5	Y	Absent		CHLORO-A(1)

YES

Project Number: 016120.0000.0000

Lab Number: L2355213

Report Date: 09/27/23

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Project Number: 016120.0000.0000

Lab Number: L2355213 Report Date: 09/27/23

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

¹

Project Number: 016120.0000.0000

Serial_No:09272315:25

Lab Number: L2355213

Report Date: 09/27/23

Data Qualifiers

- \mathbf{ND} Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name: SILVER LAKE WQMP Project Number: 016120.0000.0000

 Lab Number:
 L2355213

 Report Date:
 09/27/23

REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethvltoluene.

EPA 8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H, B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: AI, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: AI, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	CHAIN O	- CUSTO	DY	PAGE C	F	Dat	e Rec'd	in Lab	9	- 20)-2	02'	3	ALF	PHA .	lob #	: 12	1355213
		Project Infor	rmation			Re	FAX	nforn	nation	Dat	a Deli EMAIL	ivera	bles	Bill	ing In Same a	form is Clien	ation It info	PO #:
Westborough, MA TEL: 508-898-9220 FAX: 508-898-9193	Mansfield, MA TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	Silver Lake	WQMP		Re	gulat	ory R	equire	emen	ts/Re	port	Limit	5 Crite	da			
Client Informati	on	Project Locatio	n: Plymouth	County		Sta	te/hed h	rogran	1					Gine	n a			
Client: TRC Comp	anies, Inc.	Project #: 0161	20.0000.000	0 (Old: C663	3)								-		-		-	
Address: 10 Hemir	ngway Drive	Project Manag	er: Matt Lade	ewig				_	_	_	-	_						
East Providence, F	Rhode Island 02915	ALPHA Quote	#:							_								
Phone: 401-330-12	246	Turn-Around	Time			_ <u>AN</u>	ALYS	IS	1	1	T	1	-	1	1	1	T	SAMPLE HANDLING
Fax: Stephanie.Ma	artin@TRCCompanies.com	Standard		ish (only if Pi	RE-APPROVED													Filtration
Email: (See above)																	Not Needed
These samples have	been Previously analyzed by Alpha	Due Date:	Time	8														Preservation
						hyll A												Delow)
ALPHA Lab ID	Sample ID	Col	lection	Sample	Sampler's	Chlorog												Sample Specific Comments
(Lab Use Only)		Date	Time			0			-						$\frac{1}{1}$	m		-
5213 - 01	SLIL-F	9/20/23	1013	SW	AO	HA.	님	븜	븜	븜	片	님	님	님	H	H	Ħ	6
			-			H	片	片	H	H	H	H	日	H	H			
						H	H	H	H	H	Ē			ī				
						1		一										
Con Chief																		
ans been to																		
															닏			
it was seen												Ш				Ш		
				Co	ontainer Type	P	P	•	*	•	-	-	*	1	*	•	-	Please print clearly, legibly
					Preservative	<u>^</u>	n	-	-		Pacal	and By		-		ate/Tir	ne	and completely. Samples can not be logged in and turnaround time clock will not
FORM NO: 81-01(I-NJ)		all	wy R	guished By: S	AAL	9-2 9/20	0 23	15:00	E E	ion Ge	Reg	end By	4 A	4L.	a/2	0/23 3 /	1500 600	start until any ambiguities are resolved. All samples submitted are subject to Alpha's Payment Terms.
Page 15 of 15		M	Ruy	AAL	9.2	p.23	18	SOF	450	li	-		_	9	242	3 1	306	

ANALYTICAL REPORT

Lab Number:	L2363081
Client:	TRC Companies, Inc.
	10 Hemingway Dr.
	2nd Fl
	East Providence, RI 02915
ATTN:	Matt Ladewig
Phone:	(401) 330-1204
Project Name:	SILVER LAKE WQMP
Project Number:	016120.0000.0000
Report Date:	10/27/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:10272320:19

Project Name:	SILVER LAKE WQMP			Lab Number:	L2363081
Project Number:	016120.0000.0000			Report Date:	10/27/23
Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2363081-01	SLIL-F	WATER	PLYMOUTH COUNTY	10/24/23 09:40	10/24/23

Project Name: SILVER LAKE WQMP Project Number: 016120.0000.0000 Lab Number: L2363081 Report Date: 10/27/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jufani Morrissey - Tiffani Morrissey

Title: Technical Director/Representative

Date: 10/27/23

INORGANICS & MISCELLANEOUS

			Serial_No:10	0272320:19
Project Name:	SILVER LAKE WQMP	Lab	Number:	L2363081
Project Number:	016120.0000.0000	Rep	ort Date:	10/27/23
		SAMPLE RESULTS		
	1 2262081 01	Data	o Colloctod:	10/24/22 00:40

Lab ID:	L2363081-0	1					Date C	ollected:	10/24/23 09:40	
Client ID:	SLIL-F						Date R	eceived:	10/24/23	
Sample Location:	PLYMOUTH		Ϋ́				Field F	rep:	Not Specified	
Sample Depth: Matrix:	Water									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab)								
Chlorophyll A	ND		mg/m3	2.00	NA	1	10/24/23 19:34	10/25/23 13:3	0 121,10200H	JAI

Project Name:SILVER LAKE WQMPProject Number:016120.0000.0000

 Lab Number:
 L2363081

 Report Date:
 10/27/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab for sa	mple(s): 01	Batch:	WG18	843800-1				
Chlorophyll A	ND	mg/m3	2.00	NA	1	10/24/23 19:34	10/25/23 13:30	121,10200	JAI

Project Name:	SILVER LAKE WQMP	L	ab Duplicate Analy	La	ab Numbei	r: L2363081	
Project Number:	016120.0000.0000		Batch Quality Control	R	eport Date	: 10/27/23	
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits

General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1843800-2	QC Sample: L23630	081-01 C	Client ID: SLIL-F	
Chlorophyll A	ND		ND	mg/m3	NC		35

Project Name:SILVER LAKE WQMPProject Number:016120.0000.0000

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information Initial Final Temp Frozen pН deg C Pres Seal Date/Time Cooler pH Container Type Container ID Analysis(*) L2363081-01A Brown Plastic 1000ml unpreserved А NA 5.4 CHLORO-A(1) Υ Absent L2363081-01B Brown Plastic 1000ml unpreserved А NA 5.4 Υ CHLORO-A(1) Absent

YES

Project Number: 016120.0000.0000

Lab Number: L2363081

Report Date: 10/27/23

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Project Number: 016120.0000.0000

Lab Number: L2363081 Report Date: 10/27/23

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

¹

Project Number: 016120.0000.0000

Serial_No:10272320:19

Lab Number: L2363081

Report Date: 10/27/23

Data Qualifiers

- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name: SILVER LAKE WQMP Project Number: 016120.0000.0000

 Lab Number:
 L2363081

 Report Date:
 10/27/23

REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethvltoluene.

EPA 8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H, B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: AI, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: AI, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

/_	CHAIN OF	CUSTO	DY	PAGE	OF	Dat	te Rec'o	d in Lat	× 10	12	4/	23	0	AL	PHA	Job #	: 22	1363081
		Project Inform	mation		-	Re	FAX	Inforr	natio	n Dat	a Del EMAIL	ivera	bles	Bill	ing Ir Same a	nform as Clier	nation Int info	PO #:
Westborough, MA TEL: 508-898-9220 FAX: 508-898-9193	Mansfield, MA TEL: 508-822-9300 FAX: 508-822-3288	Project Name: S	Silver Lake \	VQMP		Re	ADEx gulat	ory R	equir	emen	Add'l D ts/Re	elivera	bles Limits	s				
Client Informati	on and the second second	Project Location	: Plymouth	County		Sta	te/Fed I	Program	m			_		Crite	ria		-	
Client: TRC Comp	anies, Inc.	Project #: 01612	20.0000.000	0 (Old: C66	3)					1				e ca				
Address: 10 Hemin	ngway Drive	Project Manage	r: Matt Lade	wig	-										_			
East Providence, F	Rhode Island 02915	ALPHA Quote #	;			_				_		_	_	_				1 .
Phone: 401-330-12	246	Turn-Around	Time		1 20 a	AN	ALYS	SIS	1	1	1	1	1	1	1	-	1	SAMPLE HANDLING
Fax: Stephanie.Ma	rtin@TRCCompanies.com	Standard	Ru	sh (ONLY IF P	RE-APPROVED	1												Filtration
Email: (See above))		a n 1 0333															Done Not Needed
These samples have	been Previously analyzed by Alpha	Due Date:	Time:															Lab to do
Other Project Spo	ecific Requirements/Comment	ts/Detection Limits	s:			IA										-		Lab to do (Please specify befow) S
ALPHA Lab ID (Lab Use Only)	Sample ID	Colle	ction Time	Sample Matrix	Sampler's Initials	Chlorophyl	E. Coli											Sample Specific Comments
3081-01	SLIL-F	10/24/73	0940	sw	TB SM													9
					suja (Ö												
								Ц		Ц								
										Ш						Ш		
				Co	ontainer Type	P	P		•		3		•		*		1	Please print clearly lenibly
					Preservative	A	н		-	-	•		<u></u>	.*			×	and completely. Samples can not be looged in and
		0	Reling	uished By:		Da	te/Time		-	21	Receiv	red By:	2	-	D In the	ate/Tin	ne	turnaround time clock will not start until any ambiguities are
PDHM NO: 61-61(FAU) (rev. 5-JAN-12)		Jan	A Ord	2	R	w/dy	63	40	H	fre	i	ofe	re	10.2	4.23	5/6	00	resolved. All samples submitted are subject to Alpha's Payment Terms.
Page 14 of 14		H	face	AL	10.2	4.23	_[]	15	ly	li		-		19	24	17/	5	

ANALYTICAL REPORT

Lab Number:	L2363083
Client:	TRC Companies, Inc.
	10 Hemingway Dr.
	2nd Fl
	East Providence, RI 02915
ATTN:	Matt Ladewig
Phone:	(401) 330-1204
Project Name:	SILVER LAKE WQMP
Project Number:	016120.0000.0000
Report Date:	10/27/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:10272320:18

Project Name:	SILVER LAKE WQMP			Lab Number:	L2363083
Project Number:	016120.0000.0000			Report Date:	10/27/23
Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2363083-01	EPD	WATER	PLYMOUTH COUNTY	10/24/23 13:30	10/24/23

Project Name: SILVER LAKE WQMP Project Number: 016120.0000.0000 Lab Number: L2363083 Report Date: 10/27/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jufani Morrissey - Tiffani Morrissey

Title: Technical Director/Representative

Date: 10/27/23

INORGANICS & MISCELLANEOUS

							Serial_No:10272320:18						
Project Name:	SILVER LAK	KE WQM	Р				Lab Nu	umber:	L2363083				
Project Number:	016120.000	0.0000					Report	t Date:	10/27/23				
				SAMPLE	RESUL	rs							
Lab ID:	L2363083-0	1					Date C	ollected:	10/24/23 13:30				
Client ID:	EPD						Date R	eceived:	10/24/23				
Sample Location:	PLYMOUTH	COUNT	Ϋ́				Field P	rep:	Not Specified				
Sample Depth:													
Matrix:	Water					Dilution	Date	Date	Analytical				
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst			
General Chemistry - We	stborough Lab)											
Chlorophyll A	4.13		mg/m3	2.00	NA	1	10/24/23 19:34	10/25/23 13:3	0 121,10200H	JAI			

Project Name:SILVER LAKE WQMPProject Number:016120.0000.0000

 Lab Number:
 L2363083

 Report Date:
 10/27/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab for sam	ple(s): 01	Batch:	WG18	843800-1				
Chlorophyll A	ND	mg/m3	2.00	NA	1	10/24/23 19:34	10/25/23 13:30	121,10200	I JAI

Project Name: Project Number:	SILVER LAKE WQMP 016120.0000.0000	L	ab Duplicate Analy Batch Quality Control	La R	ab Numbe eport Date	e: L2363083	
Parameter		Native Sample	Dunlicate Sample	Units	RPD	Qual	RPD Limits

- -

	Native Gample	Duplicate Daling				
General Chemistry - Westborough Lab Associated sample	e(s): 01 QC Batch ID:	WG1843800-2	QC Sample: L23630	81-01 Cli	ient ID: DUP Sample	
Chlorophyll A	ND	ND	mg/m3	NC	35	

Project Name:SILVER LAKE WQMPProject Number:016120.0000.0000

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information Initial Final Temp Frozen pН deg C Pres Seal Date/Time Cooler pH Container Type Container ID Analysis(*) L2363083-01A Brown Plastic 1000ml unpreserved А NA 5.4 CHLORO-A(1) Υ Absent L2363083-01B Brown Plastic 1000ml unpreserved А NA 5.4 Υ CHLORO-A(1) Absent

YES

Project Number: 016120.0000.0000

Lab Number: L2363083

Report Date: 10/27/23

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Project Number: 016120.0000.0000

Lab Number: L2363083 Report Date: 10/27/23

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

¹

Project Number: 016120.0000.0000

Serial_No:10272320:18

Lab Number: L2363083

Report Date: 10/27/23

Data Qualifiers

- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name: SILVER LAKE WQMP Project Number: 016120.0000.0000

 Lab Number:
 L2363083

 Report Date:
 10/27/23

REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethvltoluene.

EPA 8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H, B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: AI, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: AI, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

ALPHA		Record of the second second															And Statistics	
WERE CLERE CHEMINE		Project Infor	mation			Re	FAX	Infor	natio	n Dat	a Del EMAIL	ivera	bles	Bill	ing li Same i	nform as Clie	nation	PO #:
Westborough, MA Ma TEL: 508-898-9220 TE	ansfield, MA EL: 508-822-9300	Project Name:	Silver Lake	WQMP		Re	ADEx	ory R	leguir	emen	Add'i D ts/Re	elivera	^{bles}	s			1,10-	
FAX: 508-898-9193 FA	X: 508-822-3288	Project Location	n: Plymouth	County		Sta	ate/Fed	Prograi	m					Crite	ria			
Client: TRC Compani	ies Inc.	Project # 0161	20 0000 000	0 (Old: C66	3)			u lite					-					
Address: 10 Hemingy	way Drive	Project Manage	er: Matt Lade	wia			in the second			0				-				Saut-
East Providence, Rho	ode Island 02915	ALPHA Quote #	#:															
Phone: 401-330-1246	3	Turn-Around	Time	Solver V		AN	ALY	SIS	1	1	-	-	-	-	1	1	-	SAMPLE HANDLING
Fax: Stephanie.Martir	n@TRCCompanies.com	Standard	Ru	ISH (ONLY IF P	RE-APPROVED													Filtration
Email: (See above)																		Done Not Needed
These samples have been	en Previously analyzed by Alpha	Due Date:	Time:															Lab to do
Other Project Speci	nic Requirements/Comment	s/Detection Limit	S:			A												□ Lab to do (Please specify below)
ALPHA Lab ID (Lab Use Only)	Sample ID	Colle	ection Time	Sample Matrix	Sampler's Initials	Chlorophyll	E. Coli											Sample Specific Comments
3083-01 E	PD	10/24/23	1330	sw	JB, SM													2
					_													
					_													
							님	님	님	님			님		<u> </u>		닏	
					_		님	님		님	H			님				
							님	님		님	님	븜	님	님			님	
				_		ш		ш		ш	ш			Ц			ш	
				Co	ontainer Type	P	P H	с 2	•	-	•	-	-	*	-	-	•	Please print clearly, legibly
			Relina	uished Bu	Freservative	D	ele/Tim				Pecelu	od But			D	ate/Tin	-	and completely. Samples can not be logged in and
FORM NO: 01-01(ENJ)		Junger	h BU	Visited By.		10/2	41	44	N	Eh	receive	Aut	LIC	5.24	10/0	1/03	144	start until any ambiguities are resolved. All samples submitted are subject to Alpha's Payment Terms.
(me 8-JAN-12)		H.	Rui	ANU	- 10.24.	てう	171	5	4	il	11	r			10/2	413	715-	

ANALYTICAL REPORT

Lab Number:	L2363086
Client:	TRC Companies, Inc.
	10 Hemingway Dr.
	2nd Fl
	East Providence, RI 02915
ATTN:	Matt Ladewig
Phone:	(401) 330-1204
Project Name:	SILVER LAKE WQMP
Project Number:	016120.0000.0000
Report Date:	10/27/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:10272320:17

Project Name:	SILVER LAKE WQMP
Project Number:	016120.0000.0000

 Lab Number:
 L2363086

 Report Date:
 10/27/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2363086-01	SLIL-S	WATER	PLYMOUTH COUNTY	10/24/23 10:50	10/24/23
L2363086-02	SLIL-SS	WATER	PLYMOUTH COUNTY	10/24/23 10:55	10/24/23

Project Name: SILVER LAKE WQMP Project Number: 016120.0000.0000

Lab Number: L2363086 Report Date: 10/27/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jufani Morrissey - Tiffani Morrissey

Title: Technical Director/Representative

Date: 10/27/23

INORGANICS & MISCELLANEOUS

Project Name:	SILVER LAK		Р				Lab Nu	umber:	L2363086		
Project Number:	016120.0000.0000							t Date:	10/27/23		
				SAMPLE	RESUL	rs					
Lab ID:	L2363086-0 ²	1					Date C	ollected:	10/24/23 10:50		
Client ID:	SLIL-S Date							eceived:	10/24/23		
Sample Location:	PLYMOUTH	COUNT	Y				Field P	rep:	Not Specified		
Sample Depth: Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
General Chemistry - We	stborough Lab)									
Chlorophyll A	6.26		mg/m3	2.00	NA	1	10/24/23 19:34	10/25/23 13:3	0 121,10200H	JAI	

Serial	No:10272320:17
•••••	

Project Name:	SILVER LAP		Ρ				Lab Nu	umber:	L2363086		
Project Number:	016120.0000.0000							t Date:	10/27/23		
				SAMPLE	RESUL	тѕ					
Lab ID:	L2363086-0	2					Date C	ollected:	10/24/23 10:55		
Client ID:	SLIL-SS			Date R	eceived:	10/24/23					
Sample Location:	PLYMOUTH	I COUNT	Y				Field P	rep:	Not Specified		
Sample Depth: Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
General Chemistry - We	stborough Lab)									
Chlorophyll A	2.41		mg/m3	2.00	NA	1	10/24/23 19:34	10/25/23 13:3	0 121,10200H	JAI	

Project Name:SILVER LAKE WQMPProject Number:016120.0000.0000

 Lab Number:
 L2363086

 Report Date:
 10/27/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab for sam	ple(s): 01	-02 Ba	tch: WO	G1843800-´	1			
Chlorophyll A	ND	mg/m3	2.00	NA	1	10/24/23 19:34	10/25/23 13:30	121,10200H	JAI

Project Name:	SILVER LAKE WQMP	Lab Duplicate Analysis Batch Quality Control	Lab Number:	L2363086
Project Number:	016120.0000.0000		Report Date:	10/27/23

- -

Parameter	Native Sam	ple D	Ouplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1843800-2	QC Sample:	L2363081-01	Client ID:	DUP Sample
Chlorophyll A	ND		ND	mg/m3	NC		35

Project Name: SILVER LAKE WQMP *Project Number:* 016120.0000.0000

Serial_No:10272320:17 Lab Number: L2363086 *Report Date:* 10/27/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2363086-01A	Brown Plastic 1000ml unpreserved	А	NA		5.4	Y	Absent		CHLORO-A(1)
L2363086-01B	Brown Plastic 1000ml unpreserved	А	NA		5.4	Y	Absent		CHLORO-A(1)
L2363086-02A	Brown Plastic 1000ml unpreserved	А	NA		5.4	Y	Absent		CHLORO-A(1)
L2363086-02B	Brown Plastic 1000ml unpreserved	A	NA		5.4	Y	Absent		CHLORO-A(1)

Project Name: SILVER LAKE WQMP

Project Number: 016120.0000.0000

Lab Number: L2363086

Report Date: 10/27/23

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)						
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).						
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.						
EPA	- Environmental Protection Agency.						
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.						
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.						
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.						
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)						
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)						
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)						
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.						
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.						
MSD	- Matrix Spike Sample Duplicate: Refer to MS.						
NA	- Not Applicable.						
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.						
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.						
NI	- Not Ignitable.						
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.						
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.						
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.						
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.						
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.						
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.						
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.						
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.						
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.						

Report Format: Data Usability Report

Project Name: SILVER LAKE WQMP

Project Number: 016120.0000.0000

Lab Number: L2363086 Report Date: 10/27/23

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: Data Usability Report

¹

Project Name: SILVER LAKE WQMP

Project Number: 016120.0000.0000

Serial_No:10272320:17

Lab Number: L2363086

Report Date: 10/27/23

Data Qualifiers

- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name: SILVER LAKE WQMP Project Number: 016120.0000.0000

 Lab Number:
 L2363086

 Report Date:
 10/27/23

REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethvltoluene.

EPA 8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H, B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: AI, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: AI, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

CHAIN OF CUSTODY PAGE OF			Date Rec'd in Lab: 10/24/23 ALPHA Job #: レ23630 80									2363086						
ALPHA		Project Infor	mation		A STA	Re	FAX	Infor	matio	n Dat ⊠	a Deli EMAIL	ivera	bles	Bill	ing li Same	nform as Clie	nation	PO #:
Westborough, MA TEL: 508-698-9220 FAX: 508-898-9193	Mansfield, MA TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	Silver Lake	WQMP		Re	ADEx	ory R	Requir	emen	Add'l D ts/Re	port	^{bles} Limit	s				
Client Informati	ion <u>An a Case a</u> La	Project Location	n: Plymouth	County		Sta	ite/Fed	Prograi	m					Crite	ria		1	
Client: TRC Comp	anies, Inc.	Project #: 0161:	20.0000.000	0 (Old: C66	3)							T				120		
Address: 10 Hemir	ngway Drive	Project Manage	r: Matt Lade	ewig														
East Providence, F	Rhode Island 02915	ALPHA Quote #	:			_						_	_	_			_	
Phone: 401-330-12	246	Turn-Around	Time			AN	ALYS	SIS	1	-	-	-	<u> </u>	1	1	1	-	SAMPLE HANDLING
Fax: Stephanie.Ma	rtin@TRCCompanies.com	Standard	Ru	ish (ONLY IF PI	RE-APPROVED)													Filtration
Email: (See above))																	Not Needed
These samples have	been Previously analyzed by Alpha	Due Date:	Time:															Lab to do B
Other Project Sp	ecific Requirements/Comme	nts/Detection Limit	s:			All												Lab to do (Please specify below)
ALPHA Lab ID (Lab Use Only)	Sample ID	Colle	ction Time	Sample Matrix	Sampler's Initials	Chlorophy	E. Coli											Sample Specific Comments
-3086-01	SLIL-S	10/24/23	1050	SW	JB, 54													2
-02	SLIL-SS	10/24(23	1055	SW	JB, SM													2
					_													
							님	닏	님		님		님				닏	
						H	HH-	븜	님	H	늼	븜	븜	븜	H	H	님	
						H	븜	븜	븜	H	H	븜	H	님	H	H	븝	
- asia - a						H	님	片	님	H	님	H	H	H	H	H	片는	
				C.	ntainer Type	P	P	-	-	-	-		-			-		
					Preservative	A	н		-		-			-	-	-		Please print clearly, legibly and completely. Samples can
		Joseph	Reling	uished By:	1	Da 10/2	ate/Tim	е 446		(Receive	ed By:	2	2	D Lu/d	ate/Tin	ne / 44(not be logged in and turnaround time clock will not start until any ambiguities are resolved. All samples
FORM NO. 01-01(Hil) (Hex. 5-JAN-12)		30	he la	h	2 1	0/24/	13	11	t	The	ii	on	ul	10.	14.2	3 16	600	submitted are subject to Alpha's Payment Terms.
Page 15 of 15				et A	- 100			13	y	le	10	\sim		- 19	1ac	1.71	2	

Tuesday, October 03, 2023

Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

Project ID: SILVER LAKE WQMP SDG ID: GCP05537 Sample ID#s: CP05537

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Alille.

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Sample Id Cross Reference

October 03, 2023

SDG I.D.: GCP05537

Project ID: SILVER LAKE WQMP

Client Id	Lab Id	Matrix
EPD	CP05537	SURFACE WATER

Analysis Report

October 03, 2023

FOR: Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

Sample Information

Matrix:	SURFACE WATER
Location Code:	TRC-RI
Rush Request:	Standard
P.O.#:	

SILVER LAKE WQMP

<u>ion</u>	<u>Date</u>	<u>Time</u>
	09/20/23	13:40
СР	09/21/23	14:50
see "By" below		
	<u>ion</u> CP see "By" below	ion Date 09/20/23 CP 09/21/23 see "By" below

Laboratory Data

SDG ID: GCP05537 Phoenix ID: CP05537

Client ID:	EPD							
Parameter		Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Phosphorus, Dissolved	as P low level	0.028	0.003	mg/L	0.5	09/25/23 19:28	LG	SM4500PE-99
Nitrite-N		< 0.010	0.010	mg/L	1	09/21/23 22:15	ER	E353.2
Nitrate-N		0.03	0.02	mg/L	1	09/21/23 22:15	ER	E353.2
Nitrogen Tot Kjelo	dahl	0.49	0.10	mg/L	1	10/03/23	KDB	E351.1
Total Nitrogen		0.52	0.10	mg/L	1	10/03/23	KDB	SM4500NH3/E300.0-11
Phosphorus, as F	D	0.032	0.003	mg/L	0.5	09/25/23	LG	SM4500PE-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Project ID:

Phyllis Shiller, Laboratory Director October 03, 2023 Reviewed and Released by: Anil Makol, Project Manager

QA/QC Report

October 03, 2023

QA/QC Data

		Result	RPD	%	%	RPD	%	%	RPD	Limits	Limits		
ple No:	CP05772	(CP055	37)										
0.01	0.939	0.902	4.00	96.9			99.0			85 - 115	20		
Additional criteria matrix spike acceptance range is 75-125%.													
ΩA/QC Batch 698281 (mg/L), QC Sample No: CP05609 (CP05537)													
0.02	0.07	0.07	NC	98.0			102			90 - 110	20		
0.01	0.042	0.04	NC	104			97.2			90 - 110	20		
ple No:	CP05385	(CP055	37)										
0.10	0.28	0.30	NC	97.4			102			85 - 115	20		
n n	nple No: 0 0.01 e range is nple No: 0 0.02 0.01 nple No: 0 0.10	nple No: CP05772 0.01 0.939 e range is 75-125%. nple No: CP05609 0.02 0.07 0.01 0.042 nple No: CP05385 0.10 0.28	nple No: CP05772 (CP055 0.01 0.939 0.902 e range is 75-125%. nple No: CP05609 (CP055 0.02 0.07 0.07 0.01 0.042 0.04 nple No: CP05385 (CP055 0.10 0.28 0.30	Inple No: CP05772 (CP05537) 0.01 0.939 0.902 4.00 e range is 75-125%. nple No: CP05609 (CP05537) 0.02 0.07 0.07 NC 0.01 0.042 0.04 NC nple No: CP05385 (CP05537) 0.10 0.28 0.30 NC	nple No: CP05772 (CP05537) 0.01 0.939 0.902 4.00 96.9 e range is 75-125%. nple No: CP05609 (CP05537) 0.02 0.07 0.07 NC 98.0 0.01 0.042 0.04 NC 104 nple No: CP05385 (CP05537) 0.10 0.28 0.30 NC 97.4	nple No: CP05772 (CP05537) 0.01 0.939 0.902 4.00 96.9 e range is 75-125%. nple No: CP05609 (CP05537) 0.02 0.07 0.07 NC 98.0 0.01 0.042 0.04 NC 104 nple No: CP05385 (CP05537) 0.10 0.28 0.30 NC 97.4	nple No: CP05772 (CP05537) 0.01 0.939 0.902 4.00 96.9 e range is 75-125%. nple No: CP05609 (CP05537) 0.02 0.07 0.07 NC 98.0 0.01 0.042 0.04 NC 104 nple No: CP05385 (CP05537) 0.10 0.28 0.30 NC 97.4	nple No: CP05772 (CP05537) 96.9 99.0 0.01 0.939 0.902 4.00 96.9 99.0 e range is 75-125%. nple No: CP05609 (CP05537) 102 102 0.02 0.07 0.07 NC 98.0 102 0.01 0.042 0.04 NC 104 97.2 nple No: CP05385 (CP05537) 0.10 0.28 0.30 NC 97.4 102	nple No: CP05772 (CP05537) 96.9 99.0 0.01 0.939 0.902 4.00 96.9 99.0 e range is 75-125%.	nple No: CP05772 (CP05537) 0.01 0.939 0.902 4.00 96.9 99.0 e range is 75-125%.	nple No: CP05772 (CP05537) 0.01 0.939 0.902 4.00 96.9 99.0 85 - 115 e range is 75-125%. nple No: CP05609 (CP05537) 0.02 0.07 0.07 NC 98.0 102 90 - 110 0.01 0.042 0.04 NC 104 97.2 90 - 110 nple No: CP05385 (CP05537) 0.10 0.28 0.30 NC 97.4 102 85 - 115		

TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS.

Additional criteria: LCS acceptance range for waters is 85-115% and for soils is 75-125%. MS acceptance range is 75-125%.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director October 03, 2023

Tuesday, O	ctober 03, 2023		Sample Criteri	Sample Criteria Exceedances Report										
Criteria:	None		GCE	GCP05537 - TRC-RI										
State:	СТ						RI	Analysis						
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units						
*** NI= D=1=	(

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

October 03, 2023

SDG I.D.: GCP05537

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

Cooler, Ves No	Temp . C Pg of	envery/Contact Options: bhanle.Martin@TRCCompanies.com	oject P.O:	This section MUST be	completed with Bottle Quantities.				2					Data Format				S-1 GW-3 Data Package	5-2 GW-3 Unter in unecklist		* SURCHARGE APPLIES	
Coc	Data D	Eax:	Å	sly C663.000)	IRCCompanies.com)			A C C C C C C C C C C C C C C C C C C C							MCP Certification	on GW-1 U MWRA 65		□S-1 GW-1 □S-1 GW-2 □	S-2 GW-1 S-2 GW-2	U SW Protection	amples were collected: MA	
	ECORD	ichester, CT 06040 (860) 645-0823 • 1102	ake WQMP	.0000.0000 (Previou	a Cabral (BCabral@			1911						 5	RCP Cert	rial)				Residential DEC I/C DEC	State where s	
	CUSTODY RE	e, P.O. Box 370, Man inixlabs.com Fax vices (860) 645-	Silver L	016120.	Barbara		N 1100 - 50 - 50 - 50 - 50 - 50 - 50 - 50	STOLDSON							(Residential)	(Comm/Indust	GA Leachabi	- - - -	GB Leachab	GB-GW GB-GW GB-GW		
	CHAIN OF	East Middle Turnpike mail: makrina@phoe Client Ser r	_ Project:	Report to:	Invoice to: Quote #			340 - 100 -	X X X X					Time:	7 100S	3 14:50		nd Time: *	y ys*	ys* dard r	URCHARGE APPLIES	
		587 E Er					Nater Mater ML=Oil	Time Sampled	13410					Date:	2-21 2	210	_			3 Day Stanc	18 +]	
					2915	ation	Date: r WW=Waste V id W=Wipe O	Date Sampled	9/20/2023							q					such in	
	Ĩ	Inc.			e Island 0	- Identifica	irface Water oil SD =Soli	Sample Matrix	SW	_				 Ķ	Ŋ	Ø		:5	tion		be billed as	
		HIVIX S	RC Companies	0 Hemingway Drive	East Providence, Rhode	ent Sample - Information	iW=Ground Water SW=Su ediment SL=Sludge S=S((Other)	Customer Sample Identification	EPD					Accepted b	Ref 2			duirements or Regulation	in 15 minutes of collect		ed site samples and will b	rices quoted.
		PHOI Environment	Customer: 1	Address: 1	ш I	CI	Sampler's Signature Matrix Code: DW=Drinking Water G RW=Raw Water SE=Si B=Bulk L=Liquid X =	PHOENIX USE ONLY SAMPLE #	05537					Relinquished by:	how all.			Comments, special Ke	** Field Filtered withi		*NS/MSD are consider	accordance with the p

Tuesday, October 03, 2023

Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

Project ID: SILVER LAKE WQMP SDG ID: GCP05536 Sample ID#s: CP05536

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Alille.

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Sample Id Cross Reference

October 03, 2023

SDG I.D.: GCP05536

Project ID: SILVER LAKE WQMP

Client Id	Lab Id	Matrix
SLIL-P	CP05536	SURFACE WATER

Analysis Report

October 03, 2023

FOR: Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

Sample Information

Matrix:	SURFACE WATER
Location Code:	TRC-RI
Rush Request:	Standard
P.O.#:	

SLIL-P

SILVER LAKE WQMP

Custody Informa	ation	<u>Date</u>	<u>Time</u>
Collected by:		09/20/23	11:30
Received by:	CP	09/21/23	14:50
Analyzed by:	see "By" below		

Laboratory Data

SDG ID: GCP05536 Phoenix ID: CP05536

Client ID:	SLIL-P							
Parameter		Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Phosphorus, Dissolved	as P low level	0.007	0.003	mg/L	0.5	09/25/23 19:27	LG	SM4500PE-99
Nitrite-N		< 0.010	0.010	mg/L	1	09/21/23 22:13	ER	E353.2
Nitrate-N		< 0.02	0.02	mg/L	1	09/21/23 22:13	ER	E353.2
Nitrogen Tot Kjelo	dahl	0.39	0.10	mg/L	1	10/03/23	KDB	E351.1
Total Nitrogen		0.39	0.10	mg/L	1	10/03/23	KDB	SM4500NH3/E300.0-11
Phosphorus, as F	þ	0.015	0.003	mg/L	0.5	09/25/23	LG	SM4500PE-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Project ID:

Phyllis Shiller, Laboratory Director October 03, 2023 Reviewed and Released by: Anil Makol, Project Manager

QA/QC Report

October 03, 2023

QA/QC Data

SDG I.D.: GCP05536

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 698635 (mg/L),	QC Samp	ole No:	CP05772	(CP055	36)									
Phosphorus, as P Comment:	BRL	0.01	0.939	0.902	4.00	96.9			99.0			85 - 115	20	
Additional criteria matrix spike acceptance range is 75-125%.														
QA/QC Batch 698281 (mg/L),	QC Samp	ole No:	CP05609	(CP055	36)									
Nitrate-N	BRL	0.02	0.07	0.07	NC	98.0			102			90 - 110	20	
Nitrite-N	BRL	0.01	0.042	0.04	NC	104			97.2			90 - 110	20	
QA/QC Batch 699649 (mg/L),	QC Samp	ole No:	CP05385	(CP055	36)									
Nitrogen Tot Kjeldahl Comment:	BRL	0.10	0.28	0.30	NC	97.4			102			85 - 115	20	
TKN is reported as Organia Nitr	ogon in the	Diank I												

TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS.

Additional criteria: LCS acceptance range for waters is 85-115% and for soils is 75-125%. MS acceptance range is 75-125%.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director October 03, 2023

Tuesday, O	ctober 03, 2023		Sample Criteria	a Exceedances Report				
Criteria:	None		GCP	05536 - TRC-RI				
State: CT							RI	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
*** NI= Data	1. D'aulau ***							

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

October 03, 2023

SDG I.D.: GCP05536

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

					Ċ	IAIN	OF CU	<u> </u>	RECO	RD				Coolant: I		
PHO Environmen	ENIX States, 1	Inc.		587 E	' East M Email: m	iddle T⊍ akrina© Clien t	umpike, P.(Iphoenixla t Service	D. Box 370, Ibs.com is (860) 6	Manchest Fax (860) ;45-110 2	er, CT 060 ^z 645-0823	10		Fax: Phone: Email:	ata Delivéry/(Stephanie.M	Sontact Options:	es.com
Customer: Address:	TRC Companies 10 Hemingway Drive					Proje Repol	ct: rt to:	Silv 016	er Lake V 120.0000	VQMP .0000 (Pr∈	viously (2663.000)		Project P. This	0: section MUS1	r be
	East Providence, Rhode	Island 02	915			lnvoic Quote	e to: e #	Bari	bara Cab	ral (BCabr	al@TRC	Companie	s.com)	B ₽ •	ompleted with ttle Quantitie: ↓ ↓ ↓	- ×
C Sampler's Sionature	Client Sample - Information -	Identificat	ion Date:			2 4 7							CETTAN STAN		14885	
Matrix Code: DW=Drinking Water RW=Raw Water SE= B=Bulk L=Liquid X =	GW=Ground Water SW=Surf Sediment SL=Sludge S=Soil (Other)	ace Water	ww= Waste) Water OIL =Oil			N + CON 40	100 100 100 100 100 100 100 100 100 100	$\backslash \rangle$	$\backslash\rangle$		Contraction of the second seco				4: 58 97 9:111 N
PHOENIX USE ONLY SAMPLE #	Customer Sample Identification	Sample Matrix	Date Sampled	Time Sample	σ	⁵¹ / \$107	ALLE OLD BO	Externa de la companya de la compa	\backslash	\langle	Cerner.	A COLOGO	100 105 10 105 105 10	100 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	AND TO THE PARTY OF THE PARTY O	1100 e.19
	d-O-II	SW	31201202			×	×							1 2		
05536	SLIL-P	Sw	9/20	1132		×	×							1		
					-	_										
											+					
Relinquished by:	Accepted by:	_		Date:	Time	-			_	5		MA	-	-	Data Format	
have 1	Mrs 35		1	9-21	23	Q	50	C (Reside	ntial)	RCP C	ert	MCP Ce	rtification			
		\neq		Theft	त्	バー	Q		ndustrial) xposure	CW Pro SW Pro	otection tection	□ GW-1 GW-2	ĭ, ⊐□	NKA eSMAKI I 10% CALC		
Comments, Special F	Acquirements or Regulation	\downarrow		Turnaroi	Ind Time				chability	GA Mot	oility	□ GW-3	I	I	Other	
** Ci14 Citeoro	And a sector of				ay* avs*	:		GB Lea	chability		bility	US-1 GW-1	□ S-1 GW	-2 □S-1 GW-3 -2 □S-2 GW-3	Tier II Check	tist ckage*
		5			ays* ndard er			GA-G GB-G GB-G	W tives		C ntial	S-3 GW-1	I □ S-3 GV ction	/-2 □S-3 GW-3	Denix Std	Report
*MS/MSD are considv accordance with the	ered site samples and will be prices quoted.	e billed as	such in	*	SURCHA	RGE API	PLIES	₿	er	State wh	iere sam	oles were c	:ollected:	MA	* SURCHARGE	APPLIES
	-			-												

Tuesday, October 03, 2023

Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

Project ID: SILVER LAKE WQMP SDG ID: GCP05533 Sample ID#s: CP05533 - CP05535, CP05781

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

X.le

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Sample Id Cross Reference

October 03, 2023

SDG I.D.: GCP05533

Project ID: SILVER LAKE WQMP

Client Id	Lab Id	Matrix
SLIL-S	CP05533	SURFACE WATER
SLIL-M	CP05534	SURFACE WATER
SLIL-B	CP05535	SURFACE WATER
SLIL-SS	CP05781	SURFACE WATER

Analysis Report

October 03, 2023

FOR: Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

Sample Information

Matrix:	SURFACE WATER
Location Code:	TRC-RI
Rush Request:	Standard
P.O.#:	

SLIL-S

SILVER LAKE WQMP

ion	<u>Date</u>	<u>Time</u>
	09/20/23	10:15
CP	09/21/23	14:50
see "By" below		
	<u>ion</u> CP see "By" below	ion <u>Date</u> 09/20/23 CP 09/21/23 see "By" below

Laboratory Data

SDG ID: GCP05533 Phoenix ID: CP05533

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Phosphorus, Dissolved as P low level	0.010	0.003	mg/L	0.5	09/25/23 19:15	LG	SM4500PE-99
Nitrite-N	< 0.010	0.010	mg/L	1	09/21/23 22:10	ER	E353.2
Nitrate-N	< 0.02	0.02	mg/L	1	09/21/23 22:10	ER	E353.2
Nitrogen Tot Kjeldahl	0.40	0.10	mg/L	1	10/03/23	KDB	E351.1
Total Nitrogen	0.40	0.10	mg/L	1	10/03/23	KDB	SM4500NH3/E300.0-11
Phosphorus, as P	0.016	0.003	mg/L	0.5	09/25/23	LG	SM4500PE-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Project ID: Client ID:

Phyllis Shiller, Laboratory Director October 03, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Report

October 03, 2023

FOR: Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

Sample Information

Matrix:	SURFACE WATER
Location Code:	TRC-RI
Rush Request:	Standard
P.O.#:	

SLIL-M

SILVER LAKE WQMP

Custody Informa	<u>ition</u>	<u>Date</u>	<u>Time</u>
Collected by:		09/20/23	10:40
Received by:	CP	09/21/23	14:50
Analyzed by:	see "By" below		

Laboratory Data

SDG ID: GCP05533 Phoenix ID: CP05534

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Phosphorus, Dissolved as P low level	0.019	0.003	mg/L	0.5	09/25/23 19:23	LG	SM4500PE-99
Nitrite-N	< 0.010	0.010	mg/L	1	09/21/23 22:11	ER	E353.2
Nitrate-N	< 0.02	0.02	mg/L	1	09/21/23 22:11	ER	E353.2
Nitrogen Tot Kjeldahl	0.34	0.10	mg/L	1	10/03/23	KDB	E351.1
Total Nitrogen	0.34	0.10	mg/L	1	10/03/23	KDB	SM4500NH3/E300.0-11
Phosphorus, as P	0.016	0.003	mg/L	0.5	09/25/23	LG	SM4500PE-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Project ID: Client ID:

Phyllis Shiller, Laboratory Director October 03, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Report

October 03, 2023

FOR: Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

Sample Information

Matrix:	SURFACE WATER
Location Code:	TRC-RI
Rush Request:	Standard
P.O.#:	

SLIL-B

SILVER LAKE WQMP

Custody Informa	<u>ition</u>	<u>Date</u>	<u>Time</u>
Collected by:		09/20/23	10:50
Received by:	CP	09/21/23	14:50
Analyzed by:	see "By" below		

Laboratory Data

SDG ID: GCP05533 Phoenix ID: CP05535

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Phosphorus, Dissolved as P low level	0.037	0.003	mg/L	0.5	09/25/23 19:24	LG	SM4500PE-99
Nitrite-N	< 0.010	0.010	mg/L	1	09/21/23 22:12	ER	E353.2
Nitrate-N	< 0.02	0.02	mg/L	1	09/21/23 22:12	ER	E353.2
Nitrogen Tot Kjeldahl	0.75	0.10	mg/L	1	10/03/23	KDB	E351.1
Total Nitrogen	0.75	0.10	mg/L	1	10/03/23	KDB	SM4500NH3/E300.0-11
Phosphorus, as P	0.040	0.003	mg/L	0.5	09/25/23	LG	SM4500PE-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Project ID: Client ID:

Phyllis Shiller, Laboratory Director October 03, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Report

October 03, 2023

FOR: Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

Sample Information

Matrix:	SURFACE WATER
Location Code:	TRC-RI
Rush Request:	Standard
P.O.#:	

SLIL-SS

SILVER LAKE WQMP

Custody Inform	ation	<u>Date</u>	<u>Time</u>
Collected by:		09/20/23	10:25
Received by:	SR1	09/21/23	14:50
Analyzed by:	see "By" below		

Laboratory Data

SDG ID: GCP05533 Phoenix ID: CP05781

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Phosphorus, Dissolved as P low level	< 0.005	0.005	mg/L	1	09/26/23 21:06	LG	SM4500PE-99
Nitrite-N	< 0.010	0.010	mg/L	1	09/21/23 22:52	ER	E353.2
Nitrate-N	< 0.02	0.02	mg/L	1	09/21/23 22:52	ER	E353.2
Nitrogen Tot Kjeldahl	0.35	0.10	mg/L	1	10/03/23	KDB	E351.1
Total Nitrogen	0.35	0.10	mg/L	1	10/03/23	KDB	SM4500NH3/E300.0-11
Phosphorus, as P	0.015	0.010	mg/L	1	09/26/23	LG	SM4500PE-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Project ID: Client ID:

Phyllis Shiller, Laboratory Director October 03, 2023 Reviewed and Released by: Anil Makol, Project Manager

QA/QC Report

October 03, 2023

QA/QC Data

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 698635 (mg/L), Q	C Samp	le No: 0	CP05772	(CP055	33, CP0	5534,	CP0553	5)					
Phosphorus, as P Comment:	BRL	0.01	0.939	0.902	4.00	96.9			99.0			85 - 115	20
Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.													
QA/QC Batch 698816 (mg/L), QC Sample No: CP05891 (CP05781)													
Phosphorus, as P Comment:	BRL	0.01	0.018	0.027	NC	99.5			104			85 - 115	20
Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.													
QA/QC Batch 698281 (mg/L), QC Sample No: CP05609 (CP05533, CP05534, CP05535)													
Nitrate-N	BRL	0.02	0.07	0.07	NC	98.0			102			90 - 110	20
Nitrite-N	BRL	0.01	0.042	0.04	NC	104			97.2			90 - 110	20
QA/QC Batch 698283 (mg/L), QC Sample No: CP05772 (CP05781)													
Nitrate-N	BRL	0.02	1.42	1.44	1.40	98.9			101			90 - 110	20
Nitrite-N	BRL	0.01	0.041	0.04	NC	104			97.8			90 - 110	20
QA/QC Batch 699649 (mg/L), QC Sample No: CP05385 (CP05533, CP05534, CP05535)													
Nitrogen Tot Kjeldahl Comment:	BRL	0.10	0.28	0.30	NC	97.4			102			85 - 115	20
TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS.													
Additional criteria: LCS acceptance	e range f	or waters	is 85-115	% and for	soils is	75-125	%. MS ac	ceptanc	e range	is 75-12	5%.		
QA/QC Batch 699734 (mg/L), Q	C Samp	le No: 0	CP05781	(CP0578	31)								
Nitrogen Tot Kjeldahl Comment:	BRL	0.10	0.35	0.39	NC	91.2			96.7			85 - 115	20
TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS.													

Additional criteria: LCS acceptance range for waters is 85-115% and for soils is 75-125%. MS acceptance range is 75-125%.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference LCS - Laboratory Control Sample LCSD - Laboratory Control Sample Duplicate MS - Matrix Spike MS Dup - Matrix Spike Duplicate NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director October 03, 2023

Tuesday, O	ctober 03, 2023		Sample Criteria	Exceedances Report				
Criteria:	None		GCPI	15533 - TRC-RI				
State:	MA			66666 - TRO-RI			RI	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

October 03, 2023

SDG I.D.: GCP05533

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.
oler: Yes No □ NG ⊂ Pg of contact Options:	0: section MUST be ompleted with ttle Quantities.↓		Data Format Image: Excel Image: Excel
Coolant: II Coolant: II Temp/ Fax: Phone: Email: <u>Stephanie.M</u>	Project P. 3.000) This mpanies.com) c		MCP Certification GW-1 D MWRA eSMART GW-1 D MWRA eSMART GW-2 D S-1 10% CALC GW-3 S-1 GW-1 D S-1 GW-2 S-2 GW-1 D S-1 GW-3 S-3 GW-1 D S-1 GW-2 S-3 GW-1 D S-3 GW-2 S-3 GW-1 D S-3 GW-2 SW Protection SW Protection
RECORD Anchester, CT 06040 45-1102	r Lake WQMP 20.0000.0000 (Previously C66 ara Cabral (BCabral@TRCCo		tial) CI CI CI CI CI CV Constrial) CV
IAIN OF CUSTODY iddle Tumpike, P.O. Box 370, N iakrina@phoenixlabs.com Client Services (860) 6	Project: Silve Report to: 016 Invoice to: Barb Quote #		Image: Complexity RI 1/1000 1 1/1000 <
587 East M Email: rr		ste Water ste Water ipe OIL=Oil 0 1015 0 1050 0 1050	Date: Time 9-2/-33 9-2/-33 100/100 200/100 100/200 300/100 100/200 300/100 100/200 0ther 100/200 0ther
Inc.	e Island 02915	Identification Indection Date: Date: Sample Date Natrix Sw A/12 Sw A/12	tion be billed as such in
HMX Solution	TRC Companies 10 Hemingway Drive East Providence, Rhod	lient Sample - Information	Accepted t Accepted t aquirements or Regulation in 15 minutes of collect in 15 minutes of collect rices quoted.
PHO Environment	Customer: Address:	Cl Sampler's Suppler's Signature Barbinking Water Code: DW=Drinking Water Code: DM=Drinking W	Relinquished by: Comments, Special Re * Field Filtered with ** Sield Filtered with ** SinSD are consider accordance with the p

Tuesday, October 03, 2023

Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

Project ID: SILVER LAKE WQMP SDG ID: GCP05538 Sample ID#s: CP05538

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Alille.

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Sample Id Cross Reference

October 03, 2023

SDG I.D.: GCP05538

Project ID: SILVER LAKE WQMP

Client Id	Lab Id	Matrix
SLIL-F	CP05538	SURFACE WATER

Analysis Report

FOR: Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

October 03, 2023

Sample Information

Matrix:	SURFACE WATER
Location Code:	TRC-RI
Rush Request:	Standard
P.O.#:	

SLIL-F

SILVER LAKE WQMP

Custody Informa	<u>tion</u>	<u>Date</u>	<u>Time</u>
Collected by:		09/20/23	10:15
Received by:	СР	09/21/23	14:50
Analyzed by:	see "By" below		

_aboratory Data

SDG ID: GCP05538 Phoenix ID: CP05538

Client ID:	SLIL-F							
Parameter		Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Phosphorus, Dissolved a	as P low level	0.005	0.003	mg/L	0.5	09/25/23 19:30	LG	SM4500PE-99
Nitrite-N		< 0.010	0.010	mg/L	1	09/21/23 22:16	ER	E353.2
Nitrate-N		< 0.02	0.02	mg/L	1	09/21/23 22:16	ER	E353.2
Nitrogen Tot Kjeld	lahl	< 0.10	0.10	mg/L	1	10/03/23	KDB	E351.1
Total Nitrogen		< 0.10	0.10	mg/L	1	10/03/23	KDB	SM4500NH3/E300.0-11
Phosphorus, as P)	0.005	0.003	mg/L	0.5	09/25/23	LG	SM4500PE-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Project ID:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director October 03, 2023 Reviewed and Released by: Anil Makol, Project Manager

QA/QC Report

October 03, 2023

QA/QC Data

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 698635 (mg/L),	QC Sam	ble No:	CP05772	(CP055	38)									
Phosphorus, as P Comment:	BRL	0.01	0.939	0.902	4.00	96.9			99.0			85 - 115	20	
Additional criteria matrix spike a	cceptance	range is	75-125%.											
QA/QC Batch 698281 (mg/L),	QC Sam	ole No:	CP05609	(CP055	38)									
Nitrate-N	BRL	0.02	0.07	0.07	NC	98.0			102			90 - 110	20	
Nitrite-N	BRL	0.01	0.042	0.04	NC	104			97.2			90 - 110	20	
QA/QC Batch 699649 (mg/L),	QA/QC Batch 699649 (mg/L), QC Sample No: CP05385 (CP05538)													
Nitrogen Tot Kjeldahl Comment:	BRL	0.10	0.28	0.30	NC	97.4			102			85 - 115	20	
		DI I I		1140										

TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS.

Additional criteria: LCS acceptance range for waters is 85-115% and for soils is 75-125%. MS acceptance range is 75-125%.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director October 03, 2023

Tuesday, O	ctober 03, 2023		Sample Criteria	a Exceedances Report				
Criteria:	None		GCP	05538 - TRC-RI				
State:	СТ						RI	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
*** NI= D=1=	La D'aulau ***							

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

October 03, 2023

SDG I.D.: GCP05538

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

					CH	AIN OF	CUSTO	DV REC	ORD				Coolant: IPI Temp		
PHC Environme	ENIX S	inc.	•	587 E	East Mid- mail: mal	dle Turnpike krina@phoe `lient Ser	3, P.O. Box mixlabs.col vices (84	c 370, Manch m Fax (8 60) 645-1 1	lester, CT 0 60) 645-08; 102	6040 23		Emaii:	Stephanie.Ma	ontact Options:	u com
Customer: Address:	TRC Companies 10 Hemingway Drive					Project: Report to:		Silver Lak 016120.00	e WQMP	Previously	C663.000)		Project P.C): Soction MIICT	
	East Providence, Rhode	Island 02	2915		. = 0	nvoice to: Nuote #		Barbara (Cabral (BC	abral@TR	CCompanie	is:.com)		mpleted with the Quantities.	⇒
Sampler's Sinnature	Client Sample - Information -	· Identificat	tion Date:									Contraction of the second		ALL DE LE	$\langle \rangle$
Matrix Code: DW=Drinking Water RW=Raw Water SE B=Bulk L=Liquid X	 GW=Ground Water SW=Surf. ESediment SL=Studge S=Soi (Other) 	face Water il SD=Solid	WW=Waste I W=Wipe	» Water OIL=Oil			ON STORE	1480 + 1897 + 18	\backslash	\mathbb{N}	THE ALL AND				94 94
PHOENIX USE ONLY SAMPLE #	Customer Sample Identification	Sample Matrix	Date Sampled	Time Samplec		1111 1	240405040 26040 (80)		\backslash	Serrenz	\$1 20 T 100 5 10 T 100 100 T 100	2400 10 0 10 0 10 0 10 0 10 0 10 0 10 0			244.00
SS 38	SLIL - F	sw	01/6	1015		××	×						1 2		
Relinquished by:	Accepted by			Date:	Time:			'Residential)	<u>Ω</u> ⊐ <mark>[]</mark>	P Cert		rtification		Data Format	
		6)		2015	2	R.H		Comm/Industrial Direct Exposure		' Protection	□ GW-1 GW-2		/RA eSMART . 10% CALC	GIS/Key	
Comments, Special	Requirements or Regulations			Turnarou	Id Time:			GA Leachabilit	, GA	Mobility	GW-3				_
** Field Filtered w	ithin 15 minutes of collectic	u			۲* ys*			GB Leachabilit GA-GW		Mobility PC	S-1 GW-1 S-2 GW-1 S-2 GW-1 S-3 GW-1	□ S-1 GW □ S-2 GW □ S-3 GW	2 □S-1 GW-3 -2 □S-2 GW-3 -2 □S-3 GW-3	Tier II Checklis	t age*
				othe star Othe C	dard r			Objectives GB-GW Objectives		sidential C DEC	□ SW Prote	ction		Other	pout
*MS/MSD are consi- accordance with the	dered site samples and will be a prices quoted.	s billed as :	such in	*	URCHARC	SE APPLIES		Other	State	where san	nples were c	:ollected:	MA	* SURCHARGE AP	PLIES
]

Tuesday, October 03, 2023

Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

Project ID:SILVER LAKE WQMPSDG ID:GCP05539Sample ID#s:CP05539 - CP05540

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

X.le

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Sample Id Cross Reference

October 03, 2023

SDG I.D.: GCP05539

Project ID: SILVER LAKE WQMP

Client Id	Lab Id	Matrix
SLT-D	CP05539	SURFACE WATER
SLT-1	CP05540	SURFACE WATER

Analysis Report

October 03, 2023

FOR: Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

Sample Information

Matrix:	SURFACE WATER
Location Code:	TRC-RI
Rush Request:	Standard
P.O.#:	

SILVER LAKE WQMP

Custody Inforn	nation	<u>Date</u>	<u>Time</u>
Collected by:		09/20/23	12:20
Received by:	CP	09/21/23	14:50
Analyzed by:	see "By" below		

Laboratory Data

SDG ID: GCP05539 Phoenix ID: CP05539

Client ID:	SLT-D							
Parameter		Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Phosphorus, Dissolved	as P low level	0.014	0.003	mg/L	0.5	09/25/23 19:31	LG	SM4500PE-99
Nitrite-N		< 0.010	0.010	mg/L	1	09/21/23 22:17	ER	E353.2
Nitrate-N		0.23	0.02	mg/L	1	09/21/23 22:17	ER	E353.2
Nitrogen Tot Kjel	dahl	0.17	0.10	mg/L	1	10/03/23	KDB	E351.1
Total Nitrogen		0.40	0.10	mg/L	1	10/03/23	KDB	SM4500NH3/E300.0-11
Phosphorus, as F	c	0.026	0.003	mg/L	0.5	09/25/23	LG	SM4500PE-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Project ID:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director October 03, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Report

October 03, 2023

FOR: Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

Sample Information

Matrix:	SURFACE WATER
Location Code:	TRC-RI
Rush Request:	Standard
P.O.#:	

SLT-1

SILVER LAKE WQMP

Custody Informat	<u>tion</u>	<u>Date</u>	<u>Time</u>
Collected by:		09/20/23	13:00
Received by:	CP	09/21/23	14:50
Analyzed by:	see "By" below		

Laboratory Data

SDG ID: GCP05539 Phoenix ID: CP05540

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Phosphorus, Dissolved as P low level	0.097	0.003	mg/L	0.5	09/25/23 19:35	LG	SM4500PE-99
Nitrite-N	0.012	0.010	mg/L	1	09/21/23 22:18	ER	E353.2
Nitrate-N	< 0.02	0.02	mg/L	1	09/21/23 22:18	ER	E353.2
Nitrogen Tot Kjeldahl	1.11	0.20	mg/L	2	10/03/23	KDB	E351.1
Total Nitrogen	1.12	0.10	mg/L	1	10/03/23	KDB	SM4500NH3/E300.0-11
Phosphorus, as P	0.141	0.003	mg/L	0.5	09/25/23	LG	SM4500PE-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Project ID: Client ID:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director October 03, 2023 Reviewed and Released by: Anil Makol, Project Manager

QA/QC Report

October 03, 2023

QA/QC Data

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 698635 (mg/L), Q	C Samp	ole No: (CP05772	(CP055	39, CP0)5540)							
Phosphorus, as P Comment:	BRL	0.01	0.939	0.902	4.00	96.9			99.0			85 - 115	20
Additional criteria matrix spike acce	eptance	range is	75-125%.										
QA/QC Batch 698281 (mg/L), Q	C Samp	ole No: (CP05609	(CP055	39, CP()5540)							
Nitrate-N	BRL	0.02	0.07	0.07	NC	98.0			102			90 - 110	20
Nitrite-N	BRL	0.01	0.042	0.04	NC	104			97.2			90 - 110	20
QA/QC Batch 699649 (mg/L), Q	C Samp	ole No: (CP05385	(CP055	39)								
Nitrogen Tot Kjeldahl Comment:	BRL	0.10	0.28	0.30	NC	97.4			102			85 - 115	20
TKN is reported as Organic Nitroge	en in the	Blank, L	CS, DUP a	and MS.									
Additional criteria: LCS acceptance	e range f	or waters	s is 85-115	% and fo	r soils is	75-1259	%. MS ac	ceptanc	e range	is 75-12	5%.		
QA/QC Batch 699734 (mg/L), Q	C Samp	ole No: (CP05781	(CP055	40)								
Nitrogen Tot Kjeldahl Comment:	BRL	0.10	0.35	0.39	NC	91.2			96.7			85 - 115	20
TKN is reported as Organic Nitroge	en in the	Blank, L	CS, DUP a	and MS.									

Additional criteria: LCS acceptance range for waters is 85-115% and for soils is 75-125%. MS acceptance range is 75-125%.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

- MS Matrix Spike
- MS Dup Matrix Spike Duplicate
- NC No Criteria
- Intf Interference

Phyllis Shiller, Laboratory Director October 03, 2023

Tuesday, O	ctober 03, 2023		Sample Criteria	Sample Criteria Exceedances Report								
Criteria:	None		GCP	15539 - TRC-RI								
State:	СТ						RI	Analysis				
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units				
*** NI= Data	(

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

October 03, 2023

SDG I.D.: GCP05539

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

													Coolar	nt: IPK		
						CHA	IN OF	CUSTOD	Y RECC	IRD			Ter Date Date	np , P C	Pg of	
PHC Environme	HNIX ntal Laborator	ies, Inc.	557/H		587 Eá Em	ast Midd ail: makı Cl	le Turnpik ina@pho ient Sei	.e, P.O. Box 37 enixlabs.com rvices (860)	0, Manches Fax (860 645-110	ter, CT 0604) 645-0823 2	0		Data Uell ax: hone: mail: <u>Steph</u> a	very/Cont	act Options: @TRCCompanie	s.com
Customer:	TRC Companies					٩	oject:	ι σ	ilver Lake	NOMP			Proje	ect P.O:		
Address:	10 Hemingway Dr	ive				æ	sport to	이 	16120.000	<u>).0000 (Pre</u>	viously C	363.000)		This sec	ction MUST	be
	East Providence,	Rhode Islan	d 0291:			Ξđ	voice to uote #		larbara Cat	<u>oral (BCabra</u>	al@TRCC	ompanies.co	(n	com Bottle	pleted with Quantities	
														- >	→ →	→
Sampler's	Client Sample - Inforr	nation - Identi	ification								$\left \right\rangle$	\$ \$ \$ \$		$\langle \rangle$	140001	
Augnature Matrix Code: DW=Drinking Water RW=Raw Water SE B=Bulk L=Liquid X	GW=Ground Water S Sediment SL=Sludge	SW=Surface W SS=Soil SD=	/ater WW Solid V	rate:	ater L=Oil		The last	1997 - 1099 - 10		$\backslash \rangle$						2 4 8 9 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PHOENIX USE ONLY SAMPLE #	Customer Sam	ple San Mat	nple trix S	Date	Time Sampled	\' 	10-18-0-1 80-18-0-1 18-18-0-1	THUR AND SOLO	\langle	$\langle \rangle$	A COMPANY	100 100 100 100 100 100 100 100 100 100	10 10 10 10 10 10 10 10 10 10 10 10 10 1		AND AN	4000
05539	CTT-D	Ň	/6 M	20/2023	0220	×	×						-	2		
02240	SLT-1	S	ہ ۸	'20/2023	1300	×	×						-	2		ļ
			+													
			+													
Relinquished by:	Acce	pted by:			Jate:	Time:		R		<u>-</u>	_ <u> </u> ≥				Data Format	
hall					2.2.5	Ľ	50		idential)	ŭ RCP □	<u>, L L</u>	MCP Certifice	ation	<u> </u>	C Excel	
04	No la	Ň)		3	20123	-	N S		m/Industrial)			J GW-1 [GIS/Key	
Commonte Snocial	Decuirements or Per					i			Leachability] GW-3				
obodo (entre internet)		5			I urnaround	III III			Leachability]s-1 GW-1	S-1 GW-2 S-1	GW-3	Data Package	
** Field Filtered w	ithin 15 minutes of (collection			2 Days 3 Days	**-		88	A-GW Mectives	SWPC Residen	j LL r tial] S-3 GW-1	o-z gw-z ⊡o-z S-3 GW-2 □S-3	6W-3	Full Data Pack Phoenix Std F	age* teport
					 ✓ Stands Other 	p		556	3-GW Mectives			SW Protection			□ Other	
*MS/MSD are considered accordance with the	dered site samples an	d will be billed	d as suci	h in	INS *	RCHARGI	E APPLIES		Other	State whe	ere sampl	es were colle	cted: MA		* SURCHARGE AI	PLIES
	- his shares and a			1]

Wednesday, November 08, 2023

Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

Project ID: SILVER LAKE WQMP SDG ID: GCP33193 Sample ID#s: CP33193

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Alille.

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Sample Id Cross Reference

November 08, 2023

SDG I.D.: GCP33193

Project ID: SILVER LAKE WQMP

Client Id	Lab Id	Matrix
EPD	CP33193	SURFACE WATER

Analysis Report

FOR: Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

November 08, 2023

EPD

SILVER LAKE WQMP

Sample Informa	ation	Custody Inform	nation	<u>Date</u>
Matrix:	SURFACE WATER	Collected by:	JB	10/24/23
Location Code:	TRC-RI	Received by:	CP	10/25/23
Rush Request:	Standard	Analyzed by:	see "By" below	
P.O.#:				

Laboratory Data

SDG ID: GCP33193 Phoenix ID: CP33193

<u>Time</u> 13:30

14:36

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Phosphorus, Dissolved as P low level	0.031	0.003	mg/L	0.5	10/27/23 15:07	JR	SM4500PE-99
Nitrite-N	< 0.010	0.010	mg/L	1	10/25/23 21:45	ER	E353.2
Nitrate-N	0.08	0.02	mg/L	1	10/25/23 21:45	ER	E353.2
Nitrogen Tot Kjeldahl	0.61	0.10	mg/L	1	11/07/23	KDB	E351.1
Total Nitrogen	0.69	0.10	mg/L	1	11/07/23	KDB	SM4500NH3/E300.0-11
Phosphorus, as P	0.040	0.003	mg/L	0.5	10/27/23	JR	SM4500PE-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Project ID: Client ID:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Anil Makol, Project Manager

QA/QC Report

November 08, 2023

QA/QC Data

SDG I.D.: GCP33193

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 703839 (mg/L)), QC Samp	ble No:	CP33554	(CP331	93)									
Phosphorus, as P Comment:	BRL	0.01	0.033	0.039	NC	98.9			103			85 - 115	20	
Additional: LCS acceptance ra	nge is 85-11	5% MS	acceptance	e range	75-125%									
QA/QC Batch 703586 (mg/L)), QC Samp	ole No:	CP33223	(CP331	93)									
Nitrate-N	BRL	0.02	<0.02	<0.02	NC	101			103			90 - 110	20	
Nitrite-N	BRL	0.01	<0.010	<0.01	NC	92.8			100			90 - 110	20	
QA/QC Batch 705199 (mg/L)), QC Samp	ole No:	CP31827	(CP331	93)									
Nitrogen Tot Kjeldahl Comment:	BRL	0.10	0.24	0.27	NC	99.1			99.4			85 - 115	20	
TKN is reported as Organia Nit	rogon in the	Dlank I												

TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS.

Additional criteria: LCS acceptance range for waters is 85-115% and for soils is 75-125%. MS acceptance range is 75-125%.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis Shille

Phyllis/Shiller, Laboratory Director November 08, 2023

Wednesday,	, November 08, 2	2023	Sample Criteria	Sample Criteria Exceedances Report					
Criteria:	None		GCP3	3193 - TRC-RI					
State:	MA						RL	Analysis	
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units	
*** No Data	to Display ***								

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Analysis Comments

November 08, 2023

SDG I.D.: GCP33193

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

										CO	Coole blant: IPĶđ	
		2			CHAIN O	F CUST	rody rec	ORD		Data D	emp / Con	Pg of tact Options:
FHOE VI Environmental Labo	X And	ن ا (الم		587 E Er	ast Middle Turnp ail: makrina@ph Client S i	oike, P.O. B poenixlabs. ervices	sox 370, Manche com Fax (86 (860) 645-11	ster, CT 06040 0) 645-0823 02		Fax: Phone: Email: Stel	ohanie.Martin	@TRCCompanies.com
Customer: TRC Comp Address: 10 Heming	anies wav Drive				Project: Report t		Silver Lake 016120.00	: WQMP 00.0000 (Previor	slv C663.000) P	Pro	oject P.O: This se	ction MUST he
East Provis	dence, Rhode Isl	and 029	15		Invoice t Quote #	; ;;	Barbara C TRC UC	ubral (BCabral@	FRCCompanies.c	(mo	Bottle	pleted with a Quantities.
Sampler's Owserft 7	- Information - Ide	ntificatio	n Date: <i>1</i> 0,	124(23						A COLORIS COLORIS		1000
Matrix Code: V DW=Drinking Water GW=Ground RW=Raw Water SE=Sediment SL B=Bulk L=Liquid X =	Water SW =Surface -=Sludge S =Soil S _(Other)	e Water W tD=Solid	W=Waste \ W=Wipe C	Vater NL=Oil	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					2011, 501 2011,
PHOENIX USE ONLY SAMPLE # Iden	ner Sample	Sample Matrix	Date Sampled	Time Sampled	\$00111 (\$0)	STUDIOLOSOHO			0 10 10 10 10 10 10 10 10 10 10 10 10 10	201740 201740 20105		ALCON LINE CONTRACTOR
3343	EPD	sw 1	0/z4/73	1330	××	×				-	~	
Relinquished by:	Accepted by:	ly,		Date: 10-25 2	Time: 3 945		<u> </u> (Residential)	CT RCP Cert	MA MCP Certif	ication		<u>⊃ata Format</u> ☑ Excel
	D		4	2522	10:n1		(Comm/Industrial)	GW Protect	on 🗌 GW-1 GW-2	□ MWRA eS □ S-1 10%	MART CALC	✓ PDF GIS/Key
Comments, Special Requirements	s or Regulations:			Turnaroun	Time:		GA Leachability	GA Mobility] GW-3			
** Field Filtered within 15 minu	tes of collection			1 Day	*0		GB Leachability	GB Mobility	S-1 GW-1] S-1 GW-2 []] S-2 GW-2 []	8-1 GW-3 8-2 GW-3	Tier II Checklist Full Data Package*
				3 Day Stand	s* ard		□ GA-GW Objectives GB-GW	C Residential	SW Protectic] S-3 GW-2	S-3 GW-3	 Phoenix Std Report Other
*MS/MSD are considered site sam	nples and will be bi	lled as su	ch in	ns ⁺	RCHARGE APPLIE			State where	samples were coll	lected: MA		* SURCHARGE APPLIES
accolutatice with the prices droke						1	1					

Wednesday, November 08, 2023

Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

Project ID:SILVER LAKE WQMPSDG ID:GCP33189Sample ID#s:CP33189 - CP33192

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Alille.

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Sample Id Cross Reference

November 08, 2023

SDG I.D.: GCP33189

Project ID: SILVER LAKE WQMP

Client Id	Lab Id	Matrix
SLIL-S	CP33189	SURFACE WATER
SLIL-SS	CP33190	SURFACE WATER
SLIL-M	CP33191	SURFACE WATER
SLIL-B	CP33192	SURFACE WATER

Analysis Report

FOR: Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

November 08, 2023

SLIL-S

SILVER LAKE WQMP

Sample Informa	ation	Custody Inform	nation	Date
Matrix:	SURFACE WATER	Collected by:	JB	10/24/23
Location Code:	TRC-RI	Received by:	CP	10/25/23
Rush Request:	Standard	Analyzed by:	see "By" below	
P.O.#:				

Laboratory Data

SDG ID: GCP33189 Phoenix ID: CP33189

<u>Time</u> 10:50

14:36

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Phosphorus, Dissolved as P low level	0.017	0.003	mg/L	0.5	10/27/23 14:56	JR	SM4500PE-99
Nitrite-N	< 0.010	0.010	mg/L	1	10/25/23 21:31	ER	E353.2
Nitrate-N	0.03	0.02	mg/L	1	10/25/23 21:31	ER	E353.2
Nitrogen Tot Kjeldahl	0.42	0.10	mg/L	1	11/07/23	KDB	E351.1
Total Nitrogen	0.45	0.10	mg/L	1	11/07/23	KDB	SM4500NH3/E300.0-11
Phosphorus, as P	0.033	0.003	mg/L	0.5	10/27/23	JR	SM4500PE-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Project ID: Client ID:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Report

FOR: Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

November 08, 2023

SILVER LAKE WQMP

Sample Informa	ation	Custody Inform	nation	Date	Time
Matrix:	SURFACE WATER	Collected by:	JB	10/24/23	10:55
Location Code:	TRC-RI	Received by:	CP	10/25/23	14:36
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:					000004

Laboratory Data

SDG ID: GCP33189 Phoenix ID: CP33190

Client ID:	SLIL-SS							
Parameter		Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Phosphorus, Dissolved	as P low level	0.014	0.003	mg/L	0.5	10/27/23 14:57	JR	SM4500PE-99
Nitrite-N		< 0.010	0.010	mg/L	1	10/25/23 21:32	ER	E353.2
Nitrate-N		0.03	0.02	mg/L	1	10/25/23 21:32	ER	E353.2
Nitrogen Tot Kjele	dahl	0.33	0.10	mg/L	1	11/07/23	KDB	E351.1
Total Nitrogen		0.36	0.10	mg/L	1	11/07/23	KDB	SM4500NH3/E300.0-11
Phosphorus, as F	D	0.022	0.003	mg/L	0.5	10/27/23	JR	SM4500PE-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Project ID:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Report

FOR: Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

November 08, 2023

SILVER LAKE WQMP

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SURFACE WATER	Collected by:	JB	10/24/23	11:00
Location Code:	TRC-RI	Received by:	CP	10/25/23	14:36
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:					000004

Laboratory Data

SDG ID: GCP33189 Phoenix ID: CP33191

Client ID: S	LIL-M							
Parameter		Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Phosphorus, Dissolved as P	low level	0.013	0.003	mg/L	0.5	10/27/23 15:00	JR	SM4500PE-99
Nitrite-N		< 0.010	0.010	mg/L	1	10/25/23 21:33	ER	E353.2
Nitrate-N		0.02	0.02	mg/L	1	10/25/23 21:33	ER	E353.2
Nitrogen Tot Kjeldah	I	0.34	0.10	mg/L	1	11/07/23	KDB	E351.1
Total Nitrogen		0.36	0.10	mg/L	1	11/07/23	KDB	SM4500NH3/E300.0-11
Phosphorus, as P		0.016	0.003	mg/L	0.5	10/27/23	JR	SM4500PE-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Project ID:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Anil Makol, Project Manager

Analysis Report

FOR: Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

November 08, 2023

SLIL-B

SILVER LAKE WQMP

Sample Informati	on	Custody Informat	ion
Matrix:	SURFACE WATER	Collected by:	JB
Location Code:	TRC-RI	Received by:	СР
Rush Request:	Standard	Analyzed by:	see "By" below

Laboratory Data

SDG ID: GCP33189 Phoenix ID: CP33192

Time

11:15

14:36

Date

10/24/23

10/25/23

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Phosphorus, Dissolved as P low level	0.053	0.003	mg/L	0.5	10/27/23 15:05	JR	SM4500PE-99
Nitrite-N	< 0.010	0.010	mg/L	1	10/25/23 21:34	ER	E353.2
Nitrate-N	< 0.02	0.02	mg/L	1	10/25/23 21:34	ER	E353.2
Nitrogen Tot Kjeldahl	1.02	0.10	mg/L	1	11/07/23	KDB	E351.1
Total Nitrogen	1.02	0.10	mg/L	1	11/07/23	KDB	SM4500NH3/E300.0-11
Phosphorus, as P	0.063	0.003	mg/L	0.5	10/27/23	JR	SM4500PE-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

P.O.#:

Project ID: Client ID:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 08, 2023 Reviewed and Released by: Anil Makol, Project Manager

QA/QC Report

November 08, 2023

QA/QC Data

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 703839 (mg/L), QC	Samp	le No: C	P33554	(CP3318	39, CP3	3190,	CP3319	1, CP33	192)				
Phosphorus, as P Comment:	BRL	0.01	0.033	0.039	NC	98.9			103			85 - 115	20
Additional: LCS acceptance range i	s 85-115	5% MS a	cceptance	range 7	5-125%.								
QA/QC Batch 703584 (mg/L), QC	Samp	le No: C	P33049	(CP3318	39, CP3	3190,	CP3319	1, CP33	192)				
Nitrate-N	BRL	0.02	<0.02	<0.02	NC	101			103			90 - 110	20
Nitrite-N	BRL	0.01	<0.010	<0.01	NC	92.8			102			90 - 110	20
QA/QC Batch 705199 (mg/L), QC	Samp	le No: C	CP31827	(CP3318	39, CP3	3190,	CP3319	1, CP33	192)				
Nitrogen Tot Kjeldahl Comment:	BRL	0.10	0.24	0.27	NC	99.1			99.4			85 - 115	20

TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS.

Additional criteria: LCS acceptance range for waters is 85-115% and for soils is 75-125%. MS acceptance range is 75-125%.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis Shille

Phyllis/Shiller, Laboratory Director November 08, 2023

Wednesday	, November 08,	2023	Sample Criteria Excee	dances Report				
Criteria:	None		GCP33189 - TR	C-RI				
State: MA							RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
*** No Data	to Dicploy ***							

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Analysis Comments

November 08, 2023

SDG I.D.: GCP33189

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

JENIX	. Inc.	CHAI 587 East Middle Email: makri	N OF CUSTODY RE Turnpike, P.O. Box 370, Manc na@phoenixiabs.com Fax (CORD hester, CT 06040 860) 645-0823	Coolant: Temp Data Delive Fax: Phone:	
npanies ngway Drive vidence, Rh	ode Island 02915		bert Services (860) 645- bject: Silver La port to: 016120. oice to: Barbora ote #	1102 ke WQMP 0000.0000 (Previously C66: Cabral (BCebral@TROCon Lever Portu [Email: <u>Stephani</u> 3.000) Phote /0 Th panies.com) - +	Martin@TRCCompanies.com P.O: s section MUST be completed with 8ottle Quantities. ♦ ♦ ♦
ole - Informati A Water SW≂ SL=Sludge S (Other)	ion - Identification Date: /C -Surface Water WW=Waste	2/24/23 water olt=oil	N 1990 001 001 001 001 001 001 001 001 00			
tomer Sample dentification St II - S	Sample Date Matrix Sampled Sw (0/14/2)	Time Sampled	100 × 000 ×		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 4 5 2 2 2 2 4 5 4 5 5 5 5 5 5 5 5 5 5
SLIL-M SLIL-SS	Sw Sw	1002			1 2	
SLIL-B	> Ms	1/15	×			
Accepte		Date: Time:				Data Format
	A II	15253	Creation (Residential)	al CKP Cert al CW Protection a SW Protection a	VICP Certification SW-1 D MWRA eSMAR SW-2 D S-1 10% CALC	Excel PDF GISIKey EQuIS
nts or Regulat nutes of coll	tions	Turmaround Time: 1 Day* 2 Days* 3 Days* Candard Other	GA Leachabi GB Leachabi GB Leachabi GA-GW Obiectives Obiectives	ity C GA Mobility ity C GB Mobility C SWPC C C Residential DEC DEC C C C C	GW-3 -1 GW-1 S-1 GW-2 IS-1 GI -2 GW-1 S-2 GW-2 IS-2 GI -3 GW-1 S-3 GW-2 IS-3 G SW Protection	 .3 Other .3 Data Package .3 D Fuer II Checklist .3 D Full Data Package* .4 Phoenix Std Report Other
amples and w oted.	ill be billed as such in	* SURCHARGE	APPLIES Other	State where samples	were collected: MA	* SURCHARGE APPLIES

Thursday, November 09, 2023

Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

Project ID: SILVER LAKE WQMP SDG ID: GCP33194 Sample ID#s: CP33194 - CP33195

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

X.le

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Sample Id Cross Reference

November 09, 2023

SDG I.D.: GCP33194

Project ID: SILVER LAKE WQMP

Client Id	Lab Id	Matrix
SLT-1	CP33194	SURFACE WATER
SLT-D	CP33195	SURFACE WATER

Analysis Report

FOR: Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

November 09, 2023

SLT-1

SILVER LAKE WQMP

Sample Informa	ation	Custody Inform	nation	Date
Matrix:	SURFACE WATER	Collected by:	JB	10/24/23
Location Code:	TRC-RI	Received by:	CP	10/25/23
Rush Request:	Standard	Analyzed by:	see "By" below	

Laboratory Data

SDG ID: GCP33194 Phoenix ID: CP33194

Time

12:40

14:36

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Phosphorus, Dissolved as P low level	0.063	0.003	mg/L	0.5	10/27/23 15:08	JR	SM4500PE-99
Nitrite-N	< 0.010	0.010	mg/L	1	10/25/23 21:46	ER	E353.2
Nitrate-N	0.07	0.02	mg/L	1	10/25/23 21:46	ER	E353.2
Nitrogen Tot Kjeldahl	0.66	0.20	mg/L	2	11/07/23	KDB	E351.1
Total Nitrogen	0.73	0.10	mg/L	1	11/07/23	KDB	SM4500NH3/E300.0-11
Phosphorus, as P	0.113	0.003	mg/L	0.5	10/27/23	JR	SM4500PE-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

P.O.#:

Project ID: Client ID:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 09, 2023 Reviewed and Released by: Anil Makol, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

FOR: Attn: Stephanie Martin ESS Group Inc. A TRC Company 10 Hemingway Drive 2nd Floor Riverside, RI 02915-2224

November 09, 2023

SLT-D

SILVER LAKE WQMP

Sample Informa	ation	Custody Inform	nation	Date
Matrix:	SURFACE WATER	Collected by:	JB	10/24/23
Location Code:	TRC-RI	Received by:	СР	10/25/23
Rush Request:	Standard	Analyzed by:	see "By" below	

Laboratory Data

SDG ID: GCP33194 Phoenix ID: CP33195

Time

12:10

14:36

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Phosphorus, Dissolved as P low level	0.016	0.003	mg/L	0.5	10/27/23 15:10	JR	SM4500PE-99
Nitrite-N	< 0.010	0.010	mg/L	1	10/25/23 21:49	ER	E353.2
Nitrate-N	0.21	0.02	mg/L	1	10/25/23 21:49	ER	E353.2
Nitrogen Tot Kjeldahl	0.73	0.20	mg/L	2	11/09/23	KDB	E351.1
Total Nitrogen	0.94	0.10	mg/L	1	11/09/23	KDB	SM4500NH3/E300.0-11
Phosphorus, as P	0.167	0.003	mg/L	0.5	10/27/23	JR	SM4500PE-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

P.O.#:

Project ID: Client ID:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 09, 2023 Reviewed and Released by: Anil Makol, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

QA/QC Report

November 09, 2023

QA/QC Data

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 703839 (mg/L), C	2C Samp	ole No:	CP33554	(CP331	94, CP	33195)								
Phosphorus, as P Comment:	BRL	0.01	0.033	0.039	NC	98.9			103			85 - 115	20	
Additional: LCS acceptance range	e is 85-11	5% MS (acceptance	e range 7	/5-125%									
QA/QC Batch 703586 (mg/L), 0	2C Samp	ole No:	CP33223	(CP331	94, CP	33195)								
Nitrate-N	BRL	0.02	<0.02	<0.02	NC	101			103			90 - 110	20	
Nitrite-N	BRL	0.01	<0.010	<0.01	NC	92.8			100			90 - 110	20	
QA/QC Batch 705199 (mg/L), 0	2C Samp	ble No:	CP31827	(CP331	94)									
Nitrogen Tot Kjeldahl Comment:	BRL	0.10	0.24	0.27	NC	99.1			99.4			85 - 115	20	
TKN is reported as Organic Nitrog	gen in the	Blank, L	CS, DUP a	and MS.										
Additional criteria: LCS acceptance	ce range f	or water	s is 85-115	5% and fo	r soils is	75-125	%. MS ac	ceptan	ce range	is 75-12	25%.			
QA/QC Batch 705464 (mg/L), 0	2C Sam	ole No:	CP33195	(CP331	95)									
Nitrogen Tot Kjeldahl Comment:	BRL	0.10	0.73	0.81	10.4	98.6			101			85 - 115	20	
TKN is reported as Organic Nitrog	gen in the	Blank, L	.CS, DUP a	and MS.										

Additional criteria: LCS acceptance range for waters is 85-115% and for soils is 75-125%. MS acceptance range is 75-125%.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director November 09, 2023

Thursday, N	lovember 09, 202	23	Sample Criteria E	xceedances Report				
Criteria:	None		GCP3319	A - TRC-RI				
State:	MA						RI	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
*** Ne Dete	to Diamlay ***							

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

November 09, 2023

SDG I.D.: GCP33194

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

Coolant: PK C No No Coolant: PK C No Coolant: PK C No Coolant: Data Delivery/Contact Options: ax:	Project P.O: Se / D This section MUST be completed with Bottle Quantities.		tion Data Format in MWRA eSMART Data Format MWRA eSMART U Excel MWRA eSMART O Format 5.1 10% CALC C SISKey 5.1 10% CALC C SISKey C PDF C CUIS 0 Other 5.2 CW-2 DS-1 GW-3 C Data Package 5.3 GW-2 DS-1 GW-3 C Ther II Checklist C Phoenix Std Report C Other C Othe
CORD chester, CT 06040 (860) 645-0823 1102	ake WQMP 0000.0000 (Previously C663.000) Phas Cabral (BCabral@TRCCompanies.con Lever (Arta)		CI MA CI RCP Cert MA CI RCP Certificat MCP Certificat CI GW Protection GW-1 C CI SW Protection GW-1 C Ity CA Mobility S-1 GW-3 C Ity CB Mobility S-1 GW-4 S Ity CB Mobility S-2 GW-1 S Ity SWPC S-3 GW-1 S DEC S-3 GW-1 S State where samples were collection
CHAIN OF CUSTODY RE B7 East Middle Turnpike, P.O. Box 370, Man Email: makrina@phoenixlabs.com Fax Client Services (860) 645-	Project: Silver La Report to: 016120. Invoice to: Barbara Quote # TRC	NITE	Time: RI Time: RI Residential) 25-23 7 KS 25 1 4:240 10 0/comm/indust 11 0 123 1 4:240 133 1 4:240 14:240 0 153 1 4:240 16 68 Leachabi 17 0 18 0 19 68 Leachabi 19 68 Leachabi 10 68 Leachabi 10 68 Leachabi 10 10 11 0 11 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 10 0 10 0 10 0 10 0
58 ortes, Inc.	s Drive e, Rhode Island 02915	ormation - Identification r SW=Surface Water WW=Waste Water Ige S=Soil SD=Solid W=Wipe OIL=Oil Per) ample Sample Date Time Sw r9/24/23 / 24 Sw /9/24/23 / 24	ccepted by: Date: Ccepted by:
PHOENIX Environmental Laborat	Customer: <u>TRC Companie</u> Address: <u>10 Hemingway</u> East Providenci	Sampler's Client Sample - Inf Signature: Client Sample - Inf Signature: Client Sample - Inf Matrix Code: DW=Drinking Water GW=Ground Wate RW=Raw Water SE=Sediment SL=Sluc B=Bulk L=Liquid X =(Oth DW=Drinking Water SE=Sediment SL=Sluc SAMPLE # SL=Sluc SL=Slu	Relinquished by: Ac Relinquished by: Ac Comments, Special Requirements or R ** Field Filtered within 15 minutes o *MS/MSD are considered site samples accordance with the prices quoted.

Sample:	Silver Lake
Sample Site:	SLIL-S
Sample Depth:	
Sample Date:	20-Sep-23
Total Density (#/mL):	2,324
Total Biovolume (um ³ /mL):	5,064,730
Trophic State Index:	61.5

Species	Density #/mL	Density Percent	Biovolume um ³ /mL	Biovolume Percent
1 Anabaena planctonica	1,128	48.5	4,332,983	85.6
2 Rhodomonas minuta	468	20.1	9,367	0.2
3 Aphanizomenon flos-aquae	208	9.0	196,705	3.9
4 Cryptomonas erosa	139	6.0	72,160	1.4
5 Anabaena variabilis	121	5.2	179,706	3.5
6 Cosmarium sp.	69	3.0	14,571	0.3
7 Oscillatoria limosa	35	1.5	53,773	1.1
8 Ankistrodesmus falcatus	35	1.5	867	0.0
9 Staurastrum gracile	17	0.7	9,367	0.2
10 Microcystis aeruginosa	17	0.7	16,652	0.3
11 Cyclotella stelligera	17	0.7	954	0.0
12 Aphanothece sp.	17	0.7	3,122	0.1
13 Tabellaria fenestrata	17	0.7	166,523	3.3
14 Sphaerocystis schroeteri	17	0.7	4,857	0.1
15 Scenedesmus denticulatus	17	0.7	3,122	0.1

94

Anabaena planctonica cells/mL =	23,678
Anabaena variabilis cells/mL =	2,428
Microcystis aeruginosa cells/mL =	2,082
Oscillatoria limosa cells/mL =	867
Aphanizomenon flos-aquae cells/mL =	3,122

Aquatic Analysts

Sample:	Silver Lake
Sample Site:	SLIL-SS
Sample Depth:	
Sample Date:	20-Sep-23
-	

Total Density (#/mL):	2,339
Total Biovolume (um ³ /mL):	5,318,142
Trophic State Index:	61.9

Species	Density #/mL	Density Percent	Biovolume um ³ /mL	Biovolume Percent
1 Anabaena planctonica	1,236	52.9	4,750,233	89.3
2 Rhodomonas minuta	334	14.3	6,681	0.1
3 Aphanizomenon flos-aquae	217	9.3	232,566	4.4
4 Cryptomonas erosa	134	5.7	69,487	1.3
5 Coscinodiscus sp.	100	4.3	75,167	1.4
6 Anabaena variabilis	67	2.9	74,164	1.4
7 Sphaerocystis schroeteri	50	2.1	8,769	0.2
8 Cyclotella stelligera	50	2.1	2,756	0.1
9 Microcystis aeruginosa	33	1.4	18,708	0.4
10 Trachelomonas volvocina	17	0.7	31,486	0.6
11 Cyclotella comta	17	0.7	37,917	0.7
12 Stephanodiscus hantzschii	17	0.7	2,004	0.0
13 Ankistrodesmus falcatus	17	0.7	835	0.0
14 Oocystis pusilla	17	0.7	3,608	0.1
15 Tetraedron minimum	17	0.7	752	0.0
16 Scenedesmus denticulatus	17	0.7	3,007	0.1

Anabaena planctonica cells/mL = 2	5,958
phanizomenon flos-aquae cells/mL =	3,692
Anabaena variabilis cells/mL =	1,002
Microcystis aeruginosa cells/mL =	2,339

Aquatic Analysts

Sample:	Silver Lake
Sample Site:	SLIL-P
Sample Depth:	
Sample Date:	20-Sep-23
Total Density (#/mL):	2,031
Total Biovolume (um ³ /mL):	3,531,170
Trophic State Index:	58.9

Species	Density #/mL	Density Percent	Biovolume um ³ /mL	Biovolume Percent
· · · · · · · · · · · · · · · · · · ·				
1 Anabaena planctonica	880	43.3	3,058,404	86.6
2 Rhodomonas minuta	512	25.2	10,235	0.3
3 Cryptomonas erosa	192	9.4	99,796	2.8
4 Coscinodiscus sp.	128	6.3	95,957	2.7
5 Aphanizomenon flos-aquae	64	3.1	72,544	2.1
6 Ankistrodesmus falcatus	32	1.6	800	0.0
7 Synedra radians	32	1.6	11,515	0.3
8 Sphaerocystis schroeteri	32	1.6	22,390	0.6
9 Gomphonema clevei	16	0.8	1,439	0.0
10 Tabellaria fenestrata	16	0.8	76,766	2.2
11 Scenedesmus quadricauda	16	0.8	4,158	0.1
12 Microcystis aeruginosa	16	0.8	10,235	0.3
13 Oocystis pusilla	16	0.8	3,454	0.1
14 Asterionella formosa	16	0.8	3,518	0.1
15 Anabaena variabilis	16	0.8	24,853	0.7
16 Trachelomonas pulchella	16	0.8	31,986	0.9
17 Synedra rumpens	16	0.8	2,239	0.1
18 Cyclotella stelligera	16	0.8	880	0.0

Anabaena planctonica cells/mL =	16,713
Microcystis aeruginosa cells/mL =	1,279
Aphanizomenon flos-aquae cells/mL =	1,151
Anabaena variabilis cells/mL =	336

Aquatic Analysts

Sample: Silver Lake Sample Site: EPD Sample Depth: Sample Date: 20-Sep-23

Total Density (#/mL):	984
Total Biovolume (um ³ /mL):	352,560
Trophic State Index:	42.3

Density #/mL	Density Percent	Biovolume um ³ /mL	Biovolume Percent
344	35.0	6,880	2.0
248	25.2	129,185	36.6
67	6.8	3,679	1.0
67	6.8	5,685	1.6
57	5.8	38,125	10.8
38	3.9	27,519	7.8
38	3.9	43,204	12.3
29	2.9	717	0.2
19	1.9	32,010	9.1
19	1.9	1,624	0.5
10	1.0	1,032	0.3
10	1.0	21,690	6.2
10	1.0	4,281	1.2
10	1.0	18,011	5.1
10	1.0	15,288	4.3
10	1.0	3,631	1.0
	Density #/mL 344 248 67 67 57 38 38 29 19 19 10 10 10 10 10 10	Density Density #/mL Percent 344 35.0 248 25.2 67 6.8 67 6.8 57 5.8 38 3.9 29 2.9 19 1.9 10 1.0 10 1.0 10 1.0 10 1.0 10 1.0 10 1.0 10 1.0 10 1.0 10 1.0 10 1.0 10 1.0 10 1.0 10 1.0 10 1.0 10 1.0	Density #/mLDensity PercentBiovolume um³/mL34435.06,88024825.2129,185676.83,679676.85,685575.838,125383.927,519383.943,204292.9717191.932,010191.91,624101.021,690101.04,281101.015,288101.03,631

Microcystis aeruginosa cells/mL =	3,440
Anabaena flos-aquae cells/mL =	478

Aquatic Analysts

Sample:	Silver Lake
Sample Site:	SLIL-S
Sample Depth:	
Sample Date:	24-Oct-23
Total Density (#/mL):	1,149
Total Biovolume (um ³ /mL):	543,400
Trophic State Index:	45.5
-	

Density #/mL	Density Percent	Biovolume um ³ /mL	Biovolume Percent
775	67.4	15,496	2.9
107	9.3	293,364	54.0
89	7.8	46,311	8.5
45	3.9	56,108	10.3
18	1.6	13,359	2.5
9	0.8	3,117	0.6
9	0.8	1,603	0.3
9	0.8	1,603	0.3
9	0.8	17,723	3.3
9	0.8	25,168	4.6
9	0.8	2,627	0.5
9	0.8	1,024	0.2
9	0.8	3,206	0.6
9	0.8	14,250	2.6
9	0.8	1,478	0.3
9	0.8	42,749	7.9
9	0.8	3,990	0.7
9	0.8	223	0.0
	Density #/mL 7775 107 89 45 18 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Density Density #/mL Percent 775 67.4 107 9.3 89 7.8 45 3.9 18 1.6 9 0.8	DensityDensityBiovolume#/mLPercentum³/mL77567.415,4961079.3293,364897.846,311453.956,108181.613,35990.83,11790.81,60390.81,60390.825,16890.82,62790.81,02490.81,47890.81,47890.83,99090.8223

Anabaena planctonica cells/mL =	1,603
Aphanizomenon flos-aquae cells/mL =	891
	2,494

Aquatic Analysts

Sample ID: ZX31

64.3

Sample:	Silver Lake
Sample Site:	SLIL-SS
Sample Depth:	
Sample Date:	24-Oct-23
-	

Total Density (#/mL):	1,026
Total Biovolume (um ³ /mL):	667,002
Trophic State Index:	46.9

Species	Density #/mL	Density Percent	Biovolume um³/mL	Biovolume Percent
1 Rhodomonas minuta	616	60.0	12,317	1.8
2 Anabaena planctonica	174	16.9	508,607	76.3
3 Aphanizomenon flos-aquae	47	4.6	59,691	8.9
4 Cryptomonas erosa	39	3.8	20,529	3.1
5 Cyclotella stelligera	32	3.1	1,737	0.3
6 Ankistrodesmus falcatus	24	2.3	592	0.1
7 Mallomonas sp.	16	1.5	6,001	0.9
8 Sphaerocystis schroeteri	16	1.5	11,054	1.7
9 Coscinodiscus sp.	16	1.5	11,843	1.8
10 Melosira italica	8	0.8	14,875	2.2
11 Quadrigula closterioides	8	0.8	1,516	0.2
12 Synedra rumpens	8	0.8	1,105	0.2
13 Chrysococcus rufescens	8	0.8	671	0.1
14 Chlamydomonas sp.	8	0.8	2,566	0.4
15 Asterionella formosa	8	0.8	13,896	2.1

Aphanizomenon flos-aquae cells/mL =	947
Anabaena planctonica cells/mL =	2,779

Aquatic Analysts

Sample:	Silver Lake
Sample Site:	EPD
Sample Depth:	
Sample Date:	24-Oct-23
-	

Total Density (#/mL):	655
Total Biovolume (um ³ /mL):	395,328
Trophic State Index:	43.2

Species	Density #/mL	Density Percent	Biovolume um ³ /mL	Biovolume Percent
1 Rhodomonas minuta	392	59.8	7,838	2.0
2 Melosira italica	187	28.6	335,025	84.7
3 Cryptomonas erosa	18	2.7	9,125	2.3
4 Anabaena planctonica	12	1.8	32,114	8.1
5 Ankistrodesmus falcatus	12	1.8	292	0.1
6 Nitzschia amphibia	6	0.9	562	0.1
7 Melosira distans alpigena	6	0.9	1,024	0.3
8 Microcystis aeruginosa	6	0.9	936	0.2
9 Kephyrion sp.	6	0.9	369	0.1
10 Crucigenia quadrata	6	0.9	1,492	0.4
11 Sphaerocystis schroeteri	6	0.9	6,551	1.7

Anabaena planctonica cells/mL =	175

Microcystis	aeruginosa	cells/mL =	117
-------------	------------	------------	-----

Microcystins/Nodularins Report

Project: TRC

Submitted to:	Stephanie Martin
Organization:	TRC
Address:	10 Hemingway Drive, East Providence, RI 02915
Email:	stephanie.martin@trccompanies.com
Sample Receipt Date:	14 November 2023
Sample Condition:	1.9 °C upon arrival
Report#	230920_231024_TRC
Date Prepared:	15 November 2023
Prepared by:	Christopher Schaller

Table 1: Samples analyzed

<u>Lab ID</u>	<u>Sample ID</u>	Site	<u>Collected</u>
SLIL-F-231024	SLIL-F	Silver Lake	24 October 2023
SLIL-S-231024	SLIL-S	Silver Lake	24 October 2023
SLIL-SS-231024	SLIL-SS	Silver Lake	24 October 2023
EPD-231024	EPD	Silver Lake	24 October 2023
SLIL-F-230920	SLIL-F	Silver Lake	20 September 2023
SLIL-S-230920	SLIL-S	Silver Lake	20 September 2023
SLIL-SS-230920	SLIL-SS	Silver Lake	20 September 2023
SLIL-P-230920	SLIL-P	Silver Lake	20 September 2023
EPD-230920	EPD	Silver Lake	20 September 2023

Analytes: Adda Microcystins/Nodularins (MCs/NODs)

Abbreviations				
NA	Not Applicable	LFSM	Lab Fortified Sample Matrix	
MDL	Method Detection Limit	LFSMD	Lab Fortified Sample Matrix Duplicate	
MQL	Method Quantification Limit	LD	Lab Duplicate	
ND	Not Detected above the MDL	IS	Internal Standard	
Blank	Regent Water free from interferences	—	Not Analyzed	
LFB	Lab Fortified Blank	MRL	Method Reporting Limit	
CCC	Continued Calibration Check	CV	Low-range calibration verification	

205 Zeagler Drive Suite 302• Palatka, FL 32177info@greenwaterlab.com• greenwaterlab.com

P: (386) 328-0882 • F: (386) 328-9646 cyanolab.com

Sample Preparation

Water Sample Freeze-Thaw

The samples were inverted for 60 seconds to mix. A subset from each sample was transferred to a 15 mL vial. Three freeze-thaw cycles were employed prior to additional sample preparation and subsequent analysis.

Analytical Techniques

Enzyme-Linked Immunosorbent Assay (ELISA)

MCs/NODs

A microcystins/nodularins Adda ELISA (Abraxis) was utilized for the quantitative and sensitive congener-independent detection of MCs/NODs (US EPA Method 546 & Ohio EPA DES 701.0). The current method reporting limit is 0.30 ng/mL (ppb) based on kit sensitivity (0.15 ng/mL), dilution factors (1-fold), and initial demonstration of capability.

Qualifier	Flag
CL	Analytical result is estimated due to ineffective quenching.
J	Analyte was positively identified; the associated numerical value is estimated.
РТ	The reported result is estimated because the sample was not analyzed within required holding time.
В	Analytical result is estimated. Analyte was detected in associated reagent blank as well as the samples.
Е	Analytical result is estimated. Values achieved were outside calibration range.
Ν	Spiked sample control was outside limits
Т	The reported result is estimated because the sample exceeded temperature threshold when received

Quality Control

Table 2: LFSM and IS QC samples prepared for analyses pre-extraction (unless otherwise noted). Additional Quality Control/Quality Assurance checks included method blanks, continued calibration checks, LFBs, and external curves.

Analyte	Concentration (ng/mL)	Lab ID	QC Type	Return
MC-LR	1.0	EPD-231024	LFSM	111%
MC-LR	1.0	SLIL-F-230920	LFSM	116%

*Control limits: water LFSM \pm 30%; complicated matrix LFSM and when LFSM within 2x MDL \pm 50%; IS \pm 50%

Table 3: Adda MC-ELISA Quality Control Value Tables

Date Analyzed:	15-Nov-23	Requirement	Pass/Fail
R ² value:	0.999	≥0.98	PASS
%CV STDs:	0.2-3.8%	≤15%	PASS
LFB (1 ppb) recovery:	105%	±40% True Value	PASS
%CV LFB:	4.4%	≤20%	PASS
Low CCC (0.15 ppb) recovery:	118%	±50% True Value	PASS
LRB	< 0.08	< 0.08	PASS

Results

Table 4: Raw ELISA Data including the sample identification, analyte, date analyzed, interpolated values 1 and 2, the dilution factor, %CV of the absorbance values, and average final concentration (ng/mL; ppb).

	Sample		Date	Value 1	Value 2	Dilution		Average
Lab ID	Туре	Analyte	analyzed	(ng/mL)	(ng/mL)	Factor	%CV	(ng/mL)
SLIL-F-231024	FS	MCs/NODs	11/15/2023	0.00	0.03	1	2.3	< 0.30
SLIL-S-231024	FS	MCs/NODs	11/15/2023	0.10	0.08	1	1.6	< 0.30
SLIL-SS-231024	FS	MCs/NODs	11/15/2023	0.03	0.08	1	2.7	< 0.30
EPD-231024	FS	MCs/NODs	11/15/2023	0.33	0.27	1	4.1	0.30
EPD-231024	LFSM	MCs/NODs	11/15/2023	1.43	1.39	1	1.2	1.41
SLIL-F-230920	FS	MCs/NODs	11/15/2023	0.04	0.01	1	1.7	< 0.30
SLIL-F-230920	LFSM	MCs/NODs	11/15/2023	1.22	1.09	1	4.8	1.16
SLIL-S-230920	FS	MCs/NODs	11/15/2023	0.15	0.13	1	1.9	< 0.30
SLIL-SS-230920	FS	MCs/NODs	11/15/2023	0.15	0.16	1	0.9	< 0.30
SLIL-P-230920	FS	MCs/NODs	11/15/2023	0.16	0.15	1	0.5	< 0.30
EPD-230920	FS	MCs/NODs	11/15/2023	0.87	0.87	1	0.3	0.87

Summary of Results

Table 5: Summary of results in ng/mL

Lab ID		MCs/NODs (ng/mL)	
SLIL-F-231	024	ND	
SLIL-S-231	024	ND	
SLIL-SS-231	024	ND	
EPD-23102	24	0.30	
SLIL-F-2309	920	ND	
SLIL-S-2309	920	ND	
SLIL-SS-230	920	ND	
SLIL-P-230	920	ND	
EPD-23092	20	0.87	
ŀ	MRL (ng/mL): Analyst Initials: Date Analyzed:	0.30 CS 11/15/2023	
SLIL-P-2309 EPD-23092	920 20 MRL (ng/mL): Analyst Initials: Date Analyzed:	ND 0.87 0.30 CS 11/15/2023	

Interpretations:

Microcystins/nodularins were detected below the EPA recommended recreational threshold (8.0 ng/mL) in the **EPD-231024** and **EPD-230920** samples. Microcystins/nodularins were not detected above the MRL (0.30 ng/mL) in the remaining submitted samples.

Submitted by:

Mark T. Aubel, Ph.D. Lab Director November 16, 2023

Date:

The results in this report relate only to the samples listed above. This report shall not be reproduced except in full without written approval of the laboratory.

Attachment B: Updated Water Quality Database (Digital)